SLIB

The Portable Scheme Library
Version 2d3

by Aubrey Jaffer

SLIB is a portable library for the programming language Scheme. It provides a platform in-
dependent framework for using packages of Scheme procedures and syntax. As distributed,
SLIB contains useful packages for all Scheme implementations. Its catalog can be transpar-
ently extended to accomodate packages specific to a site, implementation, user, or directory.

More people than I can name have contributed to SLIB. Thanks to all of you!

SLIB 2d3, released February 2002.
Aubrey Jaffer <agj @ alum.mit.edu>
http://swissnet.ai.mit.edu/"jaffer/SLIB.html

Copyright (© 1993 Todd R. Eigenschink
Copyright (© 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Aubrey Jaffer

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the author.

http://swissnet.ai.mit.edu/~jaffer/SLIB.html

Chapter 1: The Library System 1

1 The Library System

1.1 Feature

SLIB denotes features by symbols. SLIB maintains a list of features supported by the
Scheme session. The set of features provided by a session may change over time. Some
features are properties of the Scheme implementation being used. The following features
detail what sort of numbers are available from an implementation.

e ’inexact
e ’rational
e ’real

e ’complex

e ’bignum

Other features correspond to the presence of sets of Scheme procedures or syntax (macros).

provided? feature Function
Returns #t if feature is supported by the current Scheme session.

provide feature Procedure
Informs SLIB that feature is supported. Henceforth (provided? feature) will return
#t.

(provided? ’foo) = #f
(provide ’foo)
(provided? ’foo) = #t

1.2 Requesting Features

SLIB creates and maintains a catalog mapping features to locations of files introducing
procedures and syntax denoted by those features.

At the beginning of each section of this manual, there is a line like (require ’feature).
The Scheme files comprising SLIB are cataloged so that these feature names map to the
corresponding files.

SLIB provides a form, require, which loads the files providing the requested feature.

require feature Procedure
e If (provided? feature) is true, then require just returns an unspecified value.

e Otherwise, if feature is found in the catalog, then the corresponding files will be
loaded and an unspecified value returned.

Subsequently (provided? feature) will return #t.

Chapter 1: The Library System 2

e Otherwise (feature not found in the catalog), an error is signaled.

The catalog can also be queried using require:feature->path.

require:feature->path feature Function
e If feature is already provided, then returns #t.

e Otherwise, if feature is in the catalog, the path or list of paths associated with
feature is returned.

e Otherwise, returns #f£.

1.3 Library Catalogs

At the start of a session no catalog is present, but is created with the first catalog inquiry
(such as (require ’random)). Several sources of catalog information are combined to
produce the catalog:

e standard SLIB packages.

e additional packages of interest to this site.

e packages specifically for the variety of Scheme which this session is running.

e packages this user wants to always have available. This catalog is the file ‘homecat’ in

the user’s HOME directory.

e packages germane to working in this (current working) directory. This catalog is the file
‘usercat’ in the directory to which it applies. One would typically cd to this directory
before starting the Scheme session.

Catalog files consist of one or more association lists. In the circumstance where a feature
symbol appears in more than one list, the latter list’s association is retrieved. Here are the
supported formats for elements of catalog lists:

(feature . <symbol>)
Redirects to the feature named <symbol>.

(feature . "<path>")
Loads file <path>.

(feature source "<path>")
slib:loads the Scheme source file <path>.

(feature compiled "<path>" ...)
slib:load-compileds the files <path>

(feature aggregate <symbol> ...)
require:requires the features <symbol>

The various macro styles first require the named macro package, then just load <path> or
load-and-macro-expand <path> as appropriate for the implementation.

(feature defmacro "<path>")
defmacro:loads the Scheme source file <path>.

Chapter 1: The Library System 3

(feature macro-by-example "<path>")
defmacro:loads the Scheme source file <path>.

(feature macro "<path>")
macro:loads the Scheme source file <path>.

(feature macros—-that-work "<path>")
macro:loads the Scheme source file <path>.

(feature syntax-case "<path>")
macro:loads the Scheme source file <path>.

(feature syntactic-closures "<path>")
macro:loads the Scheme source file <path>.

Here is an example of a ‘usercat’ catalog. A Program in this directory can invoke the ‘run’
feature with (require ’run).

;55 "usercat": SLIB catalog additions for SIMSYNCH. —*—scheme—*-
(

(simsynch . "../synch/simsynch.scm")

(run . "../synch/run.scm")

(schlep . "schlep.scm")

)

1.4 Catalog Compilation

SLIB combines the catalog information which doesn’t vary per user into the file ‘slibcat’
in the implementation-vicinity. Therefore ‘slibcat’ needs change only when new software
is installed or compiled. Because the actual pathnames of files can differ from installation
to installation, SLIB builds a separate catalog for each implementation it is used with.

The definition of *SLIB-VERSION* in SLIB file ‘require.scm’ is checked against the catalog
association of *SLIB-VERSION* to ascertain when versions have changed. I recommend that
the definition of *SLIB-VERSION* be changed whenever the library is changed. If multiple
implementations of Scheme use SLIB, remember that recompiling one ‘slibcat’ will fix
only that implementation’s catalog.

The compilation scripts of Scheme implementations which work with SLIB can automat-
ically trigger catalog compilation by deleting ‘slibcat’ or by invoking a special form of
require:

require 'new-catalog Procedure
This will load ‘mklibcat’, which compiles and writes a new ‘slibcat’.

Another special form of require erases SLIB’s catalog, forcing it to be reloaded the next
time the catalog is queried.

Chapter 1: The Library System 4

require #f Procedure

Removes SLIB’s catalog information. This should be done before saving an executable
image so that, when restored, its catalog will be loaded afresh.

Each file in the table below is descibed in terms of its file-system independent vicinity (see
Section 1.5.2 [Vicinity|, page 5). The entries of a catalog in the table override those of
catalogs above it in the table.

implementation-vicinity ‘slibcat’
This file contains the associations for the packages comprising SLIB, the
‘implcat’ and the ‘sitecat’s. The associations in the other catalogs override
those of the standard catalog.

library-vicinity ‘mklibcat.scm’
creates ‘slibcat’.
library-vicinity ‘sitecat’
This file contains the associations specific to an SLIB installation.
implementation-vicinity ‘implcat’
This file contains the associations specific to an implementation of Scheme.
Different implementations of Scheme should have different implementation-
vicinity.
implementation-vicinity ‘mkimpcat.scm’
if present, creates ‘implcat’.

implementation-vicinity ‘sitecat’
This file contains the associations specific to a Scheme implementation instal-
lation.

home-vicinity ‘homecat’
This file contains the associations specific to an SLIB user.

user-vicinity ‘usercat’
This file contains associations effecting only those sessions whose working di-
rectory is user-vicinity.

1.5 Built-in Support

The procedures described in these sections are supported by all implementations as part of
the ‘*.init’ files or by ‘require.scm’.

1.5.1 Require

features Variable

Is a list of symbols denoting features supported in this implementation. *features® can
grow as modules are required. *features® must be defined by all implementations
(see Section 7.2 [Porting], page 218).

Chapter 1: The Library System 5

Here are features which SLIB (‘require.scm’) adds to *features® when appropriate.

'inexact
e ’rational
e ’real

e ’‘complex

e ’bignum

For each item, (provided? ’feature) will return #t if that feature is available, and
#£ if not.

modules Variable
Is a list of pathnames denoting files which have been loaded.

*catalog™ Variable
Is an association list of features (symbols) and pathnames which will supply those
features. The pathname can be either a string or a pair. If pathname is a pair then
the first element should be a macro feature symbol, source, or compiled. The cdr
of the pathname should be either a string or a list.

In the following functions if the argument feature is not a symbol it is assumed to be a
pathname.

provided? feature Function
Returns #t if feature is a member of *features* or *modules* or if feature is sup-
ported by a file already loaded and #f otherwise.

require feature Procedure
feature is a symbol. If (provided? feature) is true require returns. Otherwise,
if (assq feature xcatalog*) is not #f, the associated files will be loaded and
(provided? feature) will henceforth return #t. An unspecified value is returned. If
feature is not found in *catalog*, then an error is signaled.

require pathname Procedure
pathname is a string. If pathname has not already been given as an argument to
require, pathname is loaded. An unspecified value is returned.

provide feature Procedure
Assures that feature is contained in *featuresx if feature is a symbol and *modules*
otherwise.

require:feature->path feature Function

Returns #t if feature is a member of *features* or *modules* or if feature is sup-
ported by a file already loaded. Returns a path if one was found in *catalog* under
the feature name, and #f otherwise. The path can either be a string suitable as an
argument to load or a pair as described above for *catalog™*.

Chapter 1: The Library System 6

1.5.2 Vicinity

A vicinity is a descriptor for a place in the file system. Vicinities hide from the programmer
the concepts of host, volume, directory, and version. Vicinities express only the concept
of a file environment where a file name can be resolved to a file in a system independent
manner. Vicinities can even be used on flat file systems (which have no directory structure)
by having the vicinity express constraints on the file name. On most systems a vicinity
would be a string. All of these procedures are file system dependent.

These procedures are provided by all implementations.

make-vicinity path Function
Returns the vicinity of path for use by in-vicinity.

program-vicinity Function
Returns the vicinity of the currently loading Scheme code. For an interpreter this
would be the directory containing source code. For a compiled system (with multiple
files) this would be the directory where the object or executable files are. If no file is
currently loading it the result is undefined. Warning: program-vicinity can return
incorrect values if your program escapes back into a load.

library-vicinity Function
Returns the vicinity of the shared Scheme library.

implementation-vicinity Function
Returns the vicinity of the underlying Scheme implementation. This vicinity will
likely contain startup code and messages and a compiler.

user-vicinity Function
Returns the vicinity of the current directory of the user. On most systems this is ‘"""’
(the empty string).

home-vicinity Function
Returns the vicinity of the user’s HOME directory, the directory which typically
contains files which customize a computer environment for a user. If scheme is running
without a user (eg. a daemon) or if this concept is meaningless for the platform, then
home-vicinity returns #f.

in-vicinity vicinity filename Function

Returns a filename suitable for use by slib:load, slib:load-source, slib:load-
compiled, open-input-file, open-output-file, etc. The returned filename is file-
name in vicinity. in-vicinity should allow filename to override vicinity when file-
name is an absolute pathname and vicinity is equal to the value of (user-vicinity).
The behavior of in-vicinity when filename is absolute and vicinity is not equal to
the value of (user-vicinity) is unspecified. For most systems in-vicinity can be
string-append.

Chapter 1: The Library System 7

sub-vicinity vicinity name Function
Returns the vicinity of vicinity restricted to name. This is used for large systems
where names of files in subsystems could conflict. On systems with directory structure
sub-vicinity will return a pathname of the subdirectory name of vicinity.

1.5.3 Configuration

These constants and procedures describe characteristics of the Scheme and underlying op-
erating system. They are provided by all implementations.

char-code-limit Constant
An integer 1 larger that the largest value which can be returned by char->integer.

most-positive-fixnum Constant
In implementations which support integers of practically unlimited size, most-positive-
fixnum is a large exact integer within the range of exact integers that may result from
computing the length of a list, vector, or string.

In implementations which do not support integers of practically unlimited size, most-
positive-fixnum is the largest exact integer that may result from computing the length
of a list, vector, or string.

slib:tab Constant
The tab character.

slib:form-feed Constant
The form-feed character.

software-type Function
Returns a symbol denoting the generic operating system type. For instance, unix,
vms, macos, amiga, or ms—dos.

slib:report-version Function
Displays the versions of SLIB and the underlying Scheme implementation and the
name of the operating system. An unspecified value is returned.

(slib:report-version) = slib "2d3" on scm "5bl" on unix

slib:report Function
Displays the information of (slib:report-version) followed by almost all the infor-
mation neccessary for submitting a problem report. An unspecified value is returned.

slib:report #t Function
provides a more verbose listing.

slib:report filename Function
Writes the report to file ‘filename’.

Chapter 1: The Library System 8

(slib:report)
=
slib "2d3" on scm "5bl" on unix
(implementation-vicinity) is "/home/jaffer/scm/"
(library-vicinity) is "/home/jaffer/slib/"
(scheme-file-suffix) is ".scm"
loaded *featuresx* :
trace alist qp sort
common-list-functions macro values getopt
compiled
implementation *features*
bignum complex real rational
inexact vicinity ed getenv
tmpnam abort transcript with-file
ieee-pl178 revéd-report rev4-optional-procedures hash
object-hash delay eval dynamic-wind
multiarg-apply multiarg/and- logical defmacro
string-port source current-time record
rev3-procedures rev2-procedures sun-dl string-case
array dump char-ready? full-continuation
system
implementation *catalog* :
(i/o-extensions compiled "/home/jaffer/scm/iocext.so")

1.5.4 Input/Output

These procedures are provided by all implementations.

file-exists? filename Function
Returns #t if the specified file exists. Otherwise, returns #£. If the underlying imple-
mentation does not support this feature then #f is always returned.

delete-file filename Function
Deletes the file specified by filename. If filename can not be deleted, #£ is returned.
Otherwise, #t is returned.

open-file filename modes Function
filename should be a string naming a file. open-file returns a port depending on
the symbol modes:

T an input port capable of delivering characters from the file.

rb a binary input port capable of delivering characters from the file.

w an output port capable of writing characters to a new file by that name.
wb a binary output port capable of writing characters to a new file by that

name.

Chapter 1: The Library System 9

If an implementation does not distinguish between binary and non-binary files, then
it must treat rb as r and wb as w.

If the file cannot be opened, either #f is returned or an error is signalled. For output,
if a file with the given name already exists, the effect is unspecified.

port? obj Function
Returns #t if obj is an input or output port, otherwise returns #£.

close-port port Procedure
Closes the file associated with port, rendering the port incapable of delivering or
accepting characters.

close-file has no effect if the file has already been closed. The value returned is

unspecified.
call-with-open-ports proc ports . .. Function
call-with-open-ports ports ... proc Function
Proc should be a procedure that accepts as many arguments as there are ports passed
to call-with-open-ports. call-with-open-ports calls proc with ports If

proc returns, then the ports are closed automatically and the value yielded by the proc
is returned. If proc does not return, then the ports will not be closed automatically
unless it is possible to prove that the ports will never again be used for a read or
write operation.

tmpnam Function
Returns a pathname for a file which will likely not be used by any other process.
Successive calls to (tmpnam) will return different pathnames.

current-error-port Function
Returns the current port to which diagnostic and error output is directed.

force-output Procedure
force-output port Procedure
Forces any pending output on port to be delivered to the output device and returns
an unspecified value. The port argument may be omitted, in which case it defaults
to the value returned by (current-output-port).

output-port-width Function

output-port-width port Function
Returns the width of port, which defaults to (current-output-port) if absent. If
the width cannot be determined 79 is returned.

output-port-height Function

output-port-height port Function
Returns the height of port, which defaults to (current-output-port) if absent. If
the height cannot be determined 24 is returned.

Chapter 1: The Library System 10

1.5.5 System

These procedures are provided by all implementations.

slib:load-source name Procedure
Loads a file of Scheme source code from name with the default filename extension
used in SLIB. For instance if the filename extension used in SLIB is ‘.scm’ then
(slib:load-source "foo") will load from file ‘foo.scm’.

slib:load-compiled name Procedure

On implementations which support separtely loadable compiled modules, loads a
file of compiled code from name with the implementation’s filename extension for
compiled code appended.

slib:load name Procedure
Loads a file of Scheme source or compiled code from name with the appropriate
suffixes appended. If both source and compiled code are present with the appropriate
names then the implementation will load just one. It is up to the implementation to
choose which one will be loaded.

If an implementation does not support compiled code then s1ib:1load will be identical
to slib:load-source.

slib:eval obj Procedure
eval returns the value of obj evaluated in the current top level environment. Sec-
tion 6.4.11 [Eval], page 204 provides a more general evaluation facility.

slib:eval-load filename eval Procedure
filename should be a string. If filename names an existing file, the Scheme source
code expressions and definitions are read from the file and eval called with them
sequentially. The slib:eval-load procedure does not affect the values returned by
current-input-port and current-output-port.

slib:warn argl arg2 ... Procedure
Outputs a warning message containing the arguments.

slib:error argl arg2 ... Procedure
Outputs an error message containing the arguments, aborts evaluation of the current
form and responds in a system dependent way to the error. Typical responses are to
abort the program or to enter a read-eval-print loop.

slib:exit n Procedure
slib:exit Procedure
FExits from the Scheme session returning status n to the system. If n is omitted or #t,
a success status is returned to the system (if possible). If n is #f a failure is returned

Chapter 1: The Library System 11

to the system (if possible). If n is an integer, then n is returned to the system (if
possible). If the Scheme session cannot exit an unspecified value is returned from

slib:exit.

1.5.6 Miscellany

These procedures are provided by all implementations.

identity x Function
identity returns its argument.

Example:

(identity 3)
= 3

(identity ’(foo bar))
= (foo bar)

(map identity Ist)
= (copy-list Ist)

1.5.6.1 Mutual Exclusion

An exchanger is a procedure of one argument regulating mutually exclusive access to a
resource. When a exchanger is called, its current content is returned, while being replaced

by its argument in an atomic operation.

make-exchanger obj Function

Returns a new exchanger with the argument obj as its initial content.

(define queue (make-exchanger (list a)))
A queue implemented as an exchanger holding a list can be protected from reentrant
execution thus:

(define (pop queue)
(let ((1st #£))
(dynamic-wind
(lambda () (set! 1lst (queue #f)))
(lambda () (and 1st (not (null? 1lst))
(let ((ret (car 1lst)))
(set! 1st (cdr 1st))
ret)))
(lambda () (and 1st (queue 1st))))))

(pop queue) = a

(pop queue) = #f

Chapter 1: The Library System 12

1.5.6.2 Legacy

The following procedures were present in Scheme until R4RS (see section “Language changes
7 in Revised(4) Scheme). They are provided by all SLIB implementations.

t Constant
Derfined as #t.

nil Constant
Defined as #f£.

last-pair I Function
Returns the last pair in the list I. Example:

(last-pair (cons 1 2))

= (1.2
(last-pair ’(1 2))

= (2)

= (cons 2 ’Q))

1.6 About this manual

e Entries that are labeled as Functions are called for their return values. Entries that
are labeled as Procedures are called primarily for their side effects.

e Examples in this text were produced using the scm Scheme implementation.

e At the beginning of each section, there is a line that looks like (require ’feature).
Include this line in your code prior to using the package.

Chapter 2: Scheme Syntax Extension Packages 13

2 Scheme Syntax Extension Packages

2.1 Defmacro

Defmacros are supported by all implementations.

gentemp Function
Returns a new (interned) symbol each time it is called. The symbol names are
implementation-dependent

(gentemp) = scm:GO
(gentemp) = scm:G1

defmacro:eval e Function
Returns the slib:eval of expanding all defmacros in scheme expression e.

defmacro:load filename Function
filename should be a string. If filename names an existing file, the defmacro:load
procedure reads Scheme source code expressions and definitions from the file and eval-
uates them sequentially. These source code expressions and definitions may contain
defmacro definitions. The macro:load procedure does not affect the values returned
by current-input-port and current-output-port.

defmacro? sym Function
Returns #t if sym has been defined by defmacro, #f otherwise.

macroexpand-1 form Function
macroexpand form Function
If form is a macro call, macroexpand-1 will expand the macro call once and return
it. A form is considered to be a macro call only if it is a cons whose car is a symbol
for which a defmacro has been defined.

macroexpand is similar to macroexpand-1, but repeatedly expands form until it is no
longer a macro call.

defmacro name lambda-list form . . . Macro
When encountered by defmacro:eval, defmacro:macroexpand*, or defmacro:load
defines a new macro which will henceforth be expanded when encountered by
defmacro:eval, defmacro:macroexpand*, or defmacro:load.

2.1.1 Defmacroexpand
(require ’defmacroexpand)

defmacro:expand* e Function
Returns the result of expanding all defmacros in scheme expression e.

Chapter 2: Scheme Syntax Extension Packages 14

2.2 R4RS Macros

(require ’macro) is the appropriate call if you want R4RS high-level macros but don’t
care about the low level implementation. If an SLIB R4RS macro implementation is already
loaded it will be used. Otherwise, one of the R4RS macros implemetations is loaded.

The SLIB R4RS macro implementations support the following uniform interface:

macro:expand sexpression Function
Takes an R4RS expression, macro-expands it, and returns the result of the macro
expansion.

macro:eval sexpression Function

Takes an R4RS expression, macro-expands it, evals the result of the macro expansion,
and returns the result of the evaluation.

macro:load filename Procedure
filename should be a string. If filename names an existing file, the macro:load pro-
cedure reads Scheme source code expressions and definitions from the file and eval-
uates them sequentially. These source code expressions and definitions may contain
macro definitions. The macro:load procedure does not affect the values returned by
current-input-port and current-output-port.

2.3 Macro by Example

(require ’macro-by-example)

A vanilla implementation of Macro by Example (Eugene Kohlbecker, R4RS) by Dorai
Sitaram, (dorai @ cs.rice.edu) using defmacro.

e generating hygienic global define-syntax Macro-by-Example macros cheaply.
e can define macros which use

e needn’t worry about a lexical variable in a macro definition clashing with a variable
from the macro use context

e don’t suffer the overhead of redefining the repl if defmacro natively supported (most
implementations)

2.3.1 Caveat

These macros are not referentially transparent (see section “Macros” in Revised(4)
Scheme). Lexically scoped macros (i.e., let-syntax and letrec-syntax) are not sup-
ported. In any case, the problem of referential transparency gains poignancy only when
let-syntax and letrec-syntax are used. So you will not be courting large-scale disaster
unless you’re using system-function names as local variables with unintuitive bindings that
the macro can’t use. However, if you must have the full r4rs macro functionality, look
to the more featureful (but also more expensive) versions of syntax-rules available in slib

Chapter 2: Scheme Syntax Extension Packages 15

Section 2.4 [Macros That Work]|, page 15, Section 2.5 [Syntactic Closures|, page 18, and
Section 2.6 [Syntax-Case Macros]|, page 25.

define-syntax keyword transformer-spec Macro
The keyword is an identifier, and the transformer-spec should be an instance of
syntax-rules.

The top-level syntactic environment is extended by binding the keyword to the spec-
ified transformer.

(define-syntax letx
(syntax-rules ()

((let* () bodyl body2 ...)

(let () bodyl body2 ...))

((let* ((namel vall) (name2 val2) ...)
bodyl body2 ...)

(let ((namel vall))
(let* ((name2 val2) ...)

bodyl body2 ...)))))

syntax-rules literals syntax-rule . . . Macro
literals is a list of identifiers, and each syntax-rule should be of the form

(pattern template)
where the pattern and template are as in the grammar above.

An instance of syntax-rules produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose keyword is associated with
a transformer specified by syntax-rules is matched against the patterns contained
in the syntax-rules, beginning with the leftmost syntax-rule. When a match is found,
the macro use is trancribed hygienically according to the template.

Each pattern begins with the keyword for the macro. This keyword is not involved
in the matching and is not considered a pattern variable or literal identifier.

2.4 Macros That Work

(require ’macros-that-work)

Macros That Work differs from the other R4RS macro implementations in that it does
not expand derived expression types to primitive expression types.

macro:expand expression Function

macwork:expand expression Function
Takes an R4RS expression, macro-expands it, and returns the result of the macro
expansion.

Chapter 2: Scheme Syntax Extension Packages 16

macro:eval expression Function

macwork:eval expression Function
macro:eval returns the value of expression in the current top level environment.
expression can contain macro definitions. Side effects of expression will affect the top

level environment.

macro:load filename Procedure

macwork:load filename Procedure
filename should be a string. If filename names an existing file, the macro:1load pro-
cedure reads Scheme source code expressions and definitions from the file and eval-
uates them sequentially. These source code expressions and definitions may contain
macro definitions. The macro:load procedure does not affect the values returned by
current-input-port and current-output-port.

References:

The Revised~4 Report on the Algorithmic Language Scheme Clinger and Rees [editors].
To appear in LISP Pointers. Also available as a technical report from the University of

Oregon, MIT AI Lab, and Cornell.
Macros That Work. Clinger and Rees. POPL ’91.

The supported syntax differs from the R4RS in that vectors are allowed as patterns
and as templates and are not allowed as pattern or template data.

transformer spec + (syntax-rules literals rules)

rules — ()
| (rule . rules)

rule +— (pattern template)

pattern +— pattern_var ; a symbol not in literals
symbol ; a symbol in literals
O

|

|

| (pattern . pattern)

| (ellipsis_pattern)

| #(patternx) ; extends R4RS
| #(pattern* ellipsis_pattern) ; extends R4RS
| pattern_datum

template +— pattern_var
| symbol
IO
| (template2 . template2)
| #(templatex) ; extends R4RS
| pattern_datum

template2 +— template
| ellipsis_template

Chapter 2: Scheme Syntax Extension Packages 17

pattern_datum +~— string ; no vector
| character
| boolean
| number

ellipsis_pattern + pattern ...
ellipsis_template + template ...
pattern_var +— symbol ; not in literals

literals +— ()
| (symbol . literals)

2.4.1 Definitions

Scope of an ellipsis
Within a pattern or template, the scope of an ellipsis (...) is the pattern or
template that appears to its left.

Rank of a pattern variable
The rank of a pattern variable is the number of ellipses within whose scope it
appears in the pattern.

Rank of a subtemplate
The rank of a subtemplate is the number of ellipses within whose scope it
appears in the template.

Template rank of an occurrence of a pattern variable
The template rank of an occurrence of a pattern variable within a template is
the rank of that occurrence, viewed as a subtemplate.

Variables bound by a pattern
The variables bound by a pattern are the pattern variables that appear within
it.

Referenced variables of a subtemplate
The referenced variables of a subtemplate are the pattern variables that appear
within it.

Variables opened by an ellipsis template

The variables opened by an ellipsis template are the referenced pattern variables
whose rank is greater than the rank of the ellipsis template.

2.4.2 Restrictions

No pattern variable appears more than once within a pattern.

For every occurrence of a pattern variable within a template, the template rank of the
occurrence must be greater than or equal to the pattern variable’s rank.

Every ellipsis template must open at least one variable.

Chapter 2: Scheme Syntax Extension Packages 18

For every ellipsis template, the variables opened by an ellipsis template must all be
bound to sequences of the same length.

The compiled form of a rule is
rule +~— (pattern template inserted)

pattern +— pattern_var
| symbol
IO
| (pattern . pattern)
| ellipsis_pattern
| #(pattern)
| pattern_datum

template +— pattern_var
| symbol
IO
| (template2 . template2)
| #(pattern)
| pattern_datum

template2 +— template
| ellipsis_template

pattern_datum +~— string

| character

| boolean

| number
pattern_var ~— #(V symbol rank)
ellipsis_pattern + #(E pattern pattern_vars)

ellipsis_template + #(E template pattern_vars)

inserted +— ()
| (symbol . inserted)

pattern_vars +— ()
| (pattern_var . pattern_vars)

rank > exact non-negative integer
where V and E are unforgeable values.

The pattern variables associated with an ellipsis pattern are the variables bound by
the pattern, and the pattern variables associated with an ellipsis template are the variables
opened by the ellipsis template.

Chapter 2: Scheme Syntax Extension Packages 19

If the template contains a big chunk that contains no pattern variables or inserted
identifiers, then the big chunk will be copied unnecessarily. That shouldn’t matter very
often.

2.5 Syntactic Closures

(require ’syntactic-closures)

macro:expand expression Function

synclo:expand expression Function
Returns scheme code with the macros and derived expression types of expression
expanded to primitive expression types.

macro:eval expression Function

synclo:eval expression Function
macro:eval returns the value of expression in the current top level environment.
expression can contain macro definitions. Side effects of expression will affect the top
level environment.

macro:load filename Procedure

synclo:load filename Procedure
filename should be a string. If filename names an existing file, the macro:load pro-
cedure reads Scheme source code expressions and definitions from the file and eval-
uates them sequentially. These source code expressions and definitions may contain
macro definitions. The macro:load procedure does not affect the values returned by
current-input-port and current-output-port.

2.5.1 Syntactic Closure Macro Facility

A Syntactic Closures Macro Facility
by Chris Hanson
9 November 1991

This document describes syntactic closures, a low-level macro facility for the Scheme
programming language. The facility is an alternative to the low-level macro facility de-
scribed in the Revised~4 Report on Scheme. This document is an addendum to that report.

The syntactic closures facility extends the BNF rule for transformer spec to allow a
new keyword that introduces a low-level macro transformer:

transformer spec := (transformer expression)
Additionally, the following procedures are added:

make-syntactic-closure
capture-syntactic-environment
identifier?

identifier="7

Chapter 2: Scheme Syntax Extension Packages 20

The description of the facility is divided into three parts. The first part defines basic
terminology. The second part describes how macro transformers are defined. The third
part describes the use of identifiers, which extend the syntactic closure mechanism to be
compatible with syntax-rules.

2.5.1.1 Terminology

This section defines the concepts and data types used by the syntactic closures facility.

e Forms are the syntactic entities out of which programs are recursively constructed. A
form is any expression, any definition, any syntactic keyword, or any syntactic closure.
The variable name that appears in a set! special form is also a form. Examples of
forms:

17

#t

car

(+ x 4)

(lambda (x) x)

(define pi 3.14159)

if

define

e An alias is an alternate name for a given symbol. It can appear anywhere in a form that

the symbol could be used, and when quoted it is replaced by the symbol; however, it
does not satisfy the predicate symbol?. Macro transformers rarely distinguish symbols
from aliases, referring to both as identifiers.

e A syntactic environment maps identifiers to their meanings. More precisely, it deter-
mines whether an identifier is a syntactic keyword or a variable. If it is a keyword,
the meaning is an interpretation for the form in which that keyword appears. If it
is a variable, the meaning identifies which binding of that variable is referenced. In
short, syntactic environments contain all of the contextual information necessary for
interpreting the meaning of a particular form.

e A syntactic closure consists of a form, a syntactic environment, and a list of identifiers.
All identifiers in the form take their meaning from the syntactic environment, except
those in the given list. The identifiers in the list are to have their meanings determined
later. A syntactic closure may be used in any context in which its form could have
been used. Since a syntactic closure is also a form, it may not be used in contexts
where a form would be illegal. For example, a form may not appear as a clause in the
cond special form. A syntactic closure appearing in a quoted structure is replaced by
its form.

2.5.1.2 Transformer Definition

This section describes the transformer special form and the procedures make-
syntactic-closure and capture-syntactic-environment.

transformer expression Syntax
Syntax: It is an error if this syntax occurs except as a transformer spec.

Chapter 2: Scheme Syntax Extension Packages 21

Semantics: The expression is evaluated in the standard transformer environment to
yield a macro transformer as described below. This macro transformer is bound to
a macro keyword by the special form in which the transformer expression appears
(for example, let-syntax).

A macro transformer is a procedure that takes two arguments, a form and a syntactic
environment, and returns a new form. The first argument, the input form, is the form
in which the macro keyword occurred. The second argument, the usage environment,
is the syntactic environment in which the input form occurred. The result of the
transformer, the output form, is automatically closed in the transformer environment,
which is the syntactic environment in which the transformer expression occurred.

For example, here is a definition of a push macro using syntax-rules:

(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))

Here is an equivalent definition using transformer:

(define-syntax push
(transformer
(lambda (exp env)
(let ((item
(make-syntactic-closure env ’() (cadr exp)))
(list
(make-syntactic-closure env ’() (caddr exp))))
‘(set! ,1list (coms ,item ,1list))))))

In this example, the identifiers set! and cons are closed in the transformer environ-
ment, and thus will not be affected by the meanings of those identifiers in the usage
environment env.

Some macros may be non-hygienic by design. For example, the following defines a
loop macro that implicitly binds exit to an escape procedure. The binding of exit
is intended to capture free references to exit in the body of the loop, so exit must
be left free when the body is closed:

(define-syntax loop
(transformer
(lambda (exp env)
(let ((body (cdr exp)))
‘(call-with-current-continuation
(lambda (exit)
(et £ O
,0(map (lambda (exp)
(make-syntactic-closure env ’(exit)
exp))
body)
(£3)2)))))

To assign meanings to the identifiers in a form, use make-syntactic-closure to close
the form in a syntactic environment.

Chapter 2: Scheme Syntax Extension Packages 22

make-syntactic-closure environment free-names form Function
environment must be a syntactic environment, free-names must be a list of identifiers,
and form must be a form. make-syntactic-closure constructs and returns a syn-
tactic closure of form in environment, which can be used anywhere that form could
have been used. All the identifiers used in form, except those explicitly excepted by
free-names, obtain their meanings from environment.

Here is an example where free-names is something other than the empty list. It is
instructive to compare the use of free-names in this example with its use in the loop
example above: the examples are similar except for the source of the identifier being
left free.

(define-syntax letl
(transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
‘((lambda (,id)
, (make-syntactic-closure env (list id) exp))
, (make-syntactic-closure env ’() init))))))

let1 is a simplified version of let that only binds a single identifier, and whose body
consists of a single expression. When the body expression is syntactically closed in
its original syntactic environment, the identifier that is to be bound by let1 must be
left free, so that it can be properly captured by the lambda in the output form.

To obtain a syntactic environment other than the usage environment, use capture-
syntactic-environment.

capture-syntactic-environment procedure Function
capture-syntactic-environment returns a form that will, when transformed, call
procedure on the current syntactic environment. procedure should compute and
return a new form to be transformed, in that same syntactic environment, in place of
the form.

An example will make this clear. Suppose we wanted to define a simple loop-until
keyword equivalent to

(define-syntax loop-until
(syntax-rules ()
((Loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))

The following attempt at defining loop-until has a subtle bug:

(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))

Chapter 2: Scheme Syntax Extension Packages 23

(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init >())))))))

This definition appears to take all of the proper precautions to prevent unintended
captures. It carefully closes the subexpressions in their original syntactic environment
and it leaves the id identifier free in the test, return, and step expressions, so that it
will be captured by the binding introduced by the lambda expression. Unfortunately
it uses the identifiers if and loop within that lambda expression, so if the user of
loop-until just happens to use, say, if for the identifier, it will be inadvertently
captured.

The syntactic environment that if and loop want to be exposed to is the one just
outside the lambda expression: before the user’s identifier is added to the syntactic
environment, but after the identifier loop has been added. capture-syntactic-
environment captures exactly that environment as follows:

(define-syntax loop-until
(transformer
(lambda (exp env)
(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
, (capture-syntactic-environment
(lambda (env)
¢ (lambda (,id)
(, (make-syntactic-closure env ’() ‘if)
,(close test (list id))
,(close return (list id))
(, (make-syntactic-closure env ’()
‘loop)
, (close step (list id)))))))))
(loop ,(close init 2())))))))

Chapter 2: Scheme Syntax Extension Packages 24

In this case, having captured the desired syntactic environment, it is convenient to
construct syntactic closures of the identifiers if and the loop and use them in the
body of the lambda.

A common use of capture-syntactic-environment is to get the transformer envi-
ronment of a macro transformer:

(transformer

(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)

ce)))

2.5.1.3 Identifiers

This section describes the procedures that create and manipulate identifiers. Previous
syntactic closure proposals did not have an identifier data type — they just used symbols.
The identifier data type extends the syntactic closures facility to be compatible with the
high-level syntax-rules facility.

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented
as a syntactic closure whose form is an identifier:

(make-syntactic-closure env ’() ’a)
= an alias

Aliases are implemented as syntactic closures because they behave just like syntactic
closures most of the time. The difference is that an alias may be bound to a new value (for
example by lambda or let-syntax); other syntactic closures may not be used this way. If
an alias is bound, then within the scope of that binding it is looked up in the syntactic
environment just like any other identifier.

Aliases are used in the implementation of the high-level facility syntax-rules. A
macro transformer created by syntax-rules uses a template to generate its output form,
substituting subforms of the input form into the template. In a syntactic closures implemen-
tation, all of the symbols in the template are replaced by aliases closed in the transformer
environment, while the output form itself is closed in the usage environment. This guaran-
tees that the macro transformation is hygienic, without requiring the transformer to know
the syntactic roles of the substituted input subforms.

identifier? object Function
Returns #t if object is an identifier, otherwise returns #f. Examples:

(identifier? ’a)
= #t
(identifier? (make-syntactic-closure env ’() ’a))
= #t
(identifier? "a")
= #f
(identifier? #\a)
= #f
(identifier? 97)

Chapter 2: Scheme Syntax Extension Packages 25

= #f
(identifier? #f)

= #f
(identifier? ’(a))

= #£f
(identifier? ’#(a))

= #f

The predicate eq? is used to determine if two identifers are “the same”. Thus eq?
can be used to compare identifiers exactly as it would be used to compare symbols.
Often, though, it is useful to know whether two identifiers “mean the same thing”.
For example, the cond macro uses the symbol else to identify the final clause in the
conditional. A macro transformer for cond cannot just look for the symbol else, be-
cause the cond form might be the output of another macro transformer that replaced
the symbol else with an alias. Instead the transformer must look for an identifier
that “means the same thing” in the usage environment as the symbol else means in
the transformer environment.

identifier=? environmentl identifierl environment?2 identifier2 Function
environmentl and environment2 must be syntactic environments, and identifier] and
identifier2 must be identifiers. identifier=7 returns #t if the meaning of identifierl
in environmentl is the same as that of identifier2 in environment2, otherwise it returns
#f. Examples:

(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=7 transformer-env ’x env ’x)))))))
(list (foo)
(let ((x 3))
(f00))))
= (#t #f)

(let-syntax ((bar foo))
(let-syntax
((foo
(transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env ’foo
env (cadr form))))))))
(list (foo foo)
(foobar))))
= (#f #t)

Chapter 2: Scheme Syntax Extension Packages 26

2.5.1.4 Acknowledgements

The syntactic closures facility was invented by Alan Bawden and Jonathan Rees. The
use of aliases to implement syntax-rules was invented by Alan Bawden (who prefers to
call them synthetic names). Much of this proposal is derived from an earlier proposal by
Alan Bawden.

2.6 Syntax-Case Macros

(require ’syntax-case)

macro:expand expression Function

syncase:expand expression Function
Returns scheme code with the macros and derived expression types of expression
expanded to primitive expression types.

macro:eval expression Function

syncase:eval expression Function
macro:eval returns the value of expression in the current top level environment.
expression can contain macro definitions. Side effects of expression will affect the top
level environment.

macro:load filename Procedure

syncase:load filename Procedure
filename should be a string. If filename names an existing file, the macro:1load pro-
cedure reads Scheme source code expressions and definitions from the file and eval-
uates them sequentially. These source code expressions and definitions may contain
macro definitions. The macro:1load procedure does not affect the values returned by
current-input-port and current-output-port.

This is version 2.1 of syntax-case, the low-level macro facility proposed and imple-
mented by Robert Hieb and R. Kent Dybvig.

This version is further adapted by Harald Hanche-Olsen <hanche @ imf.unit.no> to
make it compatible with, and easily usable with, SLIB. Mainly, these adaptations consisted
of:

e Removing white space from ‘expand.pp’ to save space in the distribution. This file is
not meant for human readers anyway. . .

e Removed a couple of Chez scheme dependencies.

e Renamed global variables used to minimize the possibility of name conflicts.

e Adding an SLIB-specific initialization file.

e Removing a couple extra files, most notably the documentation (but see below).

If you wish, you can see exactly what changes were done by reading the shell script in
the file ‘syncase.sh’.

Chapter 2: Scheme Syntax Extension Packages 27

The two PostScript files were omitted in order to not burden the SLIB distribution
with them. If you do intend to use syntax-case, however, you should get these files and
print them out on a PostScript printer. They are available with the original syntax-case
distribution by anonymous FTP in ‘cs.indiana.edu:/pub/scheme/syntax-case’.

In order to use syntax-case from an interactive top level, execute:

(require ’syntax-case)
(require ’repl)
(repl:top-level macro:eval)

See the section Repl (see Section 6.5.1 [Repl|, page 209) for more information.

To check operation of syntax-case get ‘cs.indiana.edu:/pub/scheme/syntax-case’,
and type

(require ’syntax-case)
(syncase:sanity-check)

Beware that syntax-case takes a long time to load — about 20s on a SPARCstation
SLC (with SCM) and about 90s on a Macintosh SE/30 (with Gambit).

2.6.1 Notes

All R4RS syntactic forms are defined, including delay. Along with delay are simple
definitions for make-promise (into which delay expressions expand) and force.

syntax-rules and with-syntax (described in TR356) are defined.

syntax-case is actually defined as a macro that expands into calls to the procedure
syntax-dispatch and the core form syntax-lambda; do not redefine these names.

Several other top-level bindings not documented in TR356 are created:
e the “hooks” in ‘hooks.ss’
e the build- procedures in ‘output.ss’
e expand-syntax (the expander)
The syntax of define has been extended to allow (define id), which assigns id to some
unspecified value.

We have attempted to maintain R4RS compatibility where possible. The incompatibil-
ities should be confined to ‘hooks.ss’. Please let us know if there is some incompatibility
that is not flagged as such.

Send bug reports, comments, suggestions, and questions to Kent Dybvig (dyb @ iu-
vax.cs.indiana.edu).

2.6.2 Note from maintainer

Included with the syntax-case files was ‘structure.scm’ which defines a macro
define-structure. There is no documentation for this macro and it is not used by any
code in SLIB.

Chapter 2: Scheme Syntax Extension Packages 28

2.7 Fluid-Let

(require ’fluid-let)

fluid-let (bindings ...) forms. .. Syntax

(fluid-let ((variable init) ...)
expression expression .. .)

The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
expressions are evaluated sequentially in the current environment, the variables are restored
to their original values, and the value of the last expression is returned.

The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead it
assigns the values of each init to the binding (determined by the rules of lexical scoping) of
its corresponding variable.

2.8 Yasos

(require ’oop) or (require ’yasos)

“Yet Another Scheme Object System’ is a simple object system for Scheme based on the
paper by Norman Adams and Jonathan Rees: Object Oriented Programming in Scheme,
Proceedings of the 1988 ACM Conference on LISP and Functional Programming, July 1988
[ACM #552880].

Another reference is:

Ken Dickey. Scheming with Objects AI Expert Volume 7, Number 10 (October 1992),
pp. 24-33.

2.8.1 Terms

Object Any Scheme data object.
Instance An instance of the OO system; an object.
Operation A method.

Notes: The object system supports multiple inheritance. An instance can inherit from
0 or more ancestors. In the case of multiple inherited operations with the same
identity, the operation used is that from the first ancestor which contains it (in
the ancestor let). An operation may be applied to any Scheme data object—
not just instances. As code which creates instances is just code, there are no
classes and no meta-anything. Method dispatch is by a procedure call a la
CLOS rather than by send syntax a la Smalltalk.

Chapter 2: Scheme Syntax Extension Packages 29

Disclaimer:
There are a number of optimizations which can be made. This implementation
is expository (although performance should be quite reasonable). See the L&FP
paper for some suggestions.

2.8.2 Interface

define-operation (opname self arg . ..) default-body Syntax
Defines a default behavior for data objects which don’t handle the operation opname.
The default behavior (for an empty default-body) is to generate an error.

define-predicate opname? Syntax
Defines a predicate opname?, usually used for determining the type of an object,
such that (opname? object) returns #t if object has an operation opname? and #£
otherwise.

object ((name self arg ...) body) ... Syntax
Returns an object (an instance of the object system) with operations. Invoking (name
object arg ... executes the body of the object with self bound to object and with
argument(s) arg. . ..

object-with-ancestors ((ancestorl initl) ...) operation . .. Syntax
A let-like form of object for multiple inheritance. It returns an object inheriting the
behaviour of ancestorl etc. An operation will be invoked in an ancestor if the object
itself does not provide such a method. In the case of multiple inherited operations
with the same identity, the operation used is the one found in the first ancestor in
the ancestor list.

operate-as component operation self arg . . . Syntax
Used in an operation definition (of self) to invoke the operation in an ancestor com-
ponent but maintain the object’s identity. Also known as “send-to-super”.

print obj port Procedure
A default print operation is provided which is just (format port obj) (see Section 3.2
[Format|, page 39) for non-instances and prints obj preceded by ‘#<INSTANCE>’ for
instances.

size obj Function
The default method returns the number of elements in obj if it is a vector, string or
list, 2 for a pair, 1 for a character and by default id an error otherwise. Objects such
as collections (see Section 6.1.8 [Collections|, page 163) may override the default in
an obvious way.

Chapter 2: Scheme Syntax Extension Packages 30

2.8.3 Setters

Setters implement generalized locations for objects associated with some sort of mu-
table state. A getter operation retrieves a value from a generalized location and the cor-
responding setter operation stores a value into the location. Only the getter is named —
the setter is specified by a procedure call as below. (Dylan uses special syntax.) Typically,
but not necessarily, getters are access operations to extract values from Yasos objects (see
Section 2.8 [Yasos|, page 28). Several setters are predefined, corresponding to getters car,
cdr, string-ref and vector-ref e.g., (setter car) is equivalent to set-car!.

This implementation of setters is similar to that in Dylan(TM) (Dylan: An object-
oriented dynamic language, Apple Computer Eastern Research and Technology). Common
LISP provides similar facilities through setf.

setter getter Function
Returns the setter for the procedure getter. E.g., since string-ref is the getter
corresponding to a setter which is actually string-set!:

(define foo "foo")
((setter string-ref) foo O #\F) ; set element 0 of foo
foo = "Foo"

set place new-value Syntax
If place is a variable name, set is equivalent to set!. Otherwise, place must have
the form of a procedure call, where the procedure name refers to a getter and the call
indicates an accessible generalized location, i.e., the call would return a value. The
return value of set is usually unspecified unless used with a setter whose definition
guarantees to return a useful value.

(set (string-ref foo 2) #\0) ; generalized location with getter
foo = "Fo0"
(set foo "foo") ; like set!

foo = "foo"

add-setter getter setter Procedure
Add procedures getter and setter to the (inaccessible) list of valid setter/getter pairs.
setter implements the store operation corresponding to the getter access operation
for the relevant state. The return value is unspecified.

remove-setter-for getter Procedure
Removes the setter corresponding to the specified getter from the list of valid setters.
The return value is unspecified.

define-access-operation getter-name Syntax
Shorthand for a Yasos define-operation defining an operation getter-name that
objects may support to return the value of some mutable state. The default operation
is to signal an error. The return value is unspecified.

Chapter 2: Scheme Syntax Extension Packages 31

2.8.4 Examples

;55 These definitions for PRINT and SIZE are
;55 already supplied by
(require ’yasos)

(define-operation (print obj port)
(format port
(if (instance? obj) "#<instance>" ""s")
obj))

(define-operation (size obj)
(cond
((vector? obj) (vector-length obj))
((1ist? obj) (length obj))
((pair? obj) 2)
((string? obj) (string-length obj))
((char? obj) 1)
(else
(error "Operation not supported: size" obj))))

(define-predicate cell?)
(define-operation (fetch obj))
(define-operation (store! obj newValue))

(define (make-cell value)
(object
((cell? self) #t)
((fetch self) value)
((store! self newValue)
(set! value newValue)
newValue)
((size self) 1)
((print self port)
(format port "#<Cell: "s>" (fetch self)))))

(define-operation (discard obj value)
(format #t "Discarding “s~%" value))

(define (make-filtered-cell value filter)
(object-with-ancestors
((cell (make-cell value)))
((store! self newValue)
(if (filter newValue)
(store! cell newValue)
(discard self newValue)))))

(define-predicate array?)

Chapter 2: Scheme Syntax Extension Packages

(define-operation (array-ref array index))
(define-operation (array-set! array index value))

(define (make-array num-slots)
(let ((anArray (make-vector num-slots)))
(object
((array? self) #t)
((size self) num-slots)
((array-ref self index)
(vector-ref anArray index))
((array-set! self index newValue)
(vector-set! anArray index newValue))
((print self port)
(format port "#<Array “s>" (size self))))))

(define-operation (position obj))
(define-operation (discarded-value obj))

(define (make-cell-with-history value filter size)
(let ((pos 0) (most-recent-discard #f))
(object-with-ancestors
((cell (make-filtered-call value filter))
(sequence (make-array size)))
((array? self) #f)
((position self) pos)
((store! self newValue)

(operate-as cell store! self newValue)

(array-set! self pos newValue)

(set! pos (+ pos 1)))

((discard self value)

(set! most-recent-discard value))
((discarded-value self) most-recent-discard)
((print self port)

(format port "#<Cell-with-history ~s>"

(fetch self))))))

(define-access-operation fetch)
(add-setter fetch store!)
(define foo (make-cell 1))
(print foo #f)

= "#<Cell: 1>"

(set (fetch foo) 2)

=

(print foo #f)

= "#<Cell: 2>"

(fetch foo)

= 2

Chapter 3: Textual Conversion Packages 33

3 Textual Conversion Packages

3.1 Precedence Parsing

(require ’precedence-parse) or (require ’parse)
This package implements:

e a Pratt style precedence parser;

e a tokenizer which congeals tokens according to assigned classes of constituent charac-
ters;

e procedures giving direct control of parser rulesets;

e procedures for higher level specification of rulesets.

3.1.1 Precedence Parsing Overview

This package offers improvements over previous parsers.

e Common computer language constructs are concisely specified.

e Grammars can be changed dynamically. Operators can be assigned different meanings
within a lexical context.

e Rulesets don’t need compilation. Grammars can be changed incrementally.

e Operator precedence is specified by integers.

e All possibilities of bad input are handled! and return as much structure as was parsed
when the error occured; The symbol 7 is substituted for missing input.

Here are the higher-level syntax types and an example of each. Precedence considerations
are omitted for clarity. See Section 3.1.5 [Grammar Rule Definition], page 37 for full details.

nofix bye exit Grammar
bye

calls the function exit with no arguments.

prefix - negate Grammar
- 42

Calls the function negate with the argument 42.

infix - difference Grammar
xX-y
Calls the function difference with arguments x and y.

! How do I know this? I parsed 250kbyte of random input (an e-mail file) with a non-
trivial grammar utilizing all constructs.

Chapter 3: Textual Conversion Packages

nary + sum
Xty +z

Calls the function sum with arguments x, y, and y.

postfix ! factorial
5 !

Calls the function factorial with the argument 5.

prestfix set set!
set foo bar

Calls the function set! with the arguments foo and bar.

commentfix /* */
/* almost any text here */

Ignores the comment delimited by /* and */.

matchfix { list }
{0, 1, 2}

Calls the function 1ist with the arguments 0, 1, and 2.

inmatchfix (funcall)
f(x, y)

Calls the function funcall with the arguments f, x, and y.

delim ;
set foo bar;

delimits the extent of the restfix operator set.

3.1.2 Ruleset Definition and Use

syn-defs

34

Grammar

Grammar

Grammar

Grammar

Grammar

Grammar

Grammar

Variable

A grammar is built by one or more calls to prec:define-grammar. The rules are
appended to *syn-defs*. The value of *syn-defs* is the grammar suitable for passing

as an argument to prec:parse.

syn-ignore-whitespace

Constant

Is a nearly empty grammar with whitespace characters set to group 0, which means
they will not be made into tokens. Most rulesets will want to start with *syn-ignore-

whitespacex*

Chapter 3: Textual Conversion Packages 35

In order to start defining a grammar, either
(set! *syn-defs* ’())
or

(set! *syn-defs* *syn-ignore-whitespacex)

prec:define-grammar rulel . .. Function
Appends rulel ... to *syn-defs*. prec:define-grammar is used to define both the
character classes and rules for tokens.

Once your grammar is defined, save the value of *syn-defs* in a variable (for use when
calling prec:parse).

(define my-ruleset *syn-defsx)

prec:parse ruleset delim Function

prec:parse ruleset delim port Function
The ruleset argument must be a list of rules as constructed by prec:define-grammar
and extracted from *syn-defs*.

The token delim may be a character, symbol, or string. A character delim argument
will match only a character token; i.e. a character for which no token-group is as-
signed. A symbols or string will match only a token string; i.e. a token resulting from
a token group.

prec:parse reads a ruleset grammar expression delimited by delim from the given
input port. prec:parse returns the next object parsable from the given input port,
updating port to point to the first character past the end of the external representation
of the object.

If an end of file is encountered in the input before any characters are found that can
begin an object, then an end of file object is returned. If a delimiter (such as delim) is
found before any characters are found that can begin an object, then #f is returned.

The port argument may be omitted, in which case it defaults to the value returned
by current-input-port. It is an error to parse from a closed port.

3.1.3 Token definition

tok:char-group group chars chars-proc Function
The argument chars may be a single character, a list of characters, or a string. Each
character in chars is treated as though tok: char-group was called with that character
alone.

The argument chars-proc must be a procedure of one argument, a list of characters.
After tokenize has finished accumulating the characters for a token, it calls chars-
proc with the list of characters. The value returned is the token which tokenize
returns.

Chapter 3: Textual Conversion Packages 36

The argument group may be an exact integer or a procedure of one character argu-
ment. The following discussion concerns the treatment which the tokenizing routine,
tokenize, will accord to characters on the basis of their groups.

When group is a non-zero integer, characters whose group number is equal to or
exactly one less than group will continue to accumulate. Any other character causes
the accumulation to stop (until a new token is to be read).

The group of zero is special. These characters are ignored when parsed pending a
token, and stop the accumulation of token characters when the accumulation has
already begun. Whitespace characters are usually put in group 0.

If group is a procedure, then, when triggerd by the occurence of an initial (no accumu-
lation) chars character, this procedure will be repeatedly called with each successive
character from the input stream until the group procedure returns a non-false value.

The following convenient constants are provided for use with tok:char-group.

tok:decimal-digits Constant
Is the string "0123456789".

tok:upper-case Constant
Is the string consisting of all upper-case letters ("ABCDEFGHIJKLMNOPQRSTU-
VWXYZ").

tok:lower-case Constant

Is the string consisting of all lower-case letters ("abedefghijklmnopqrstuvwxyz").

tok:whitespaces Constant
Is the string consisting of all characters between 0 and 255 for which char-
whitespace? returns true.

3.1.4 Nud and Led Definition

This section describes advanced features. You can skip this section on first reading.

The Null Denotation (or nud) of a token is the procedure and arguments applying for that
token when Left, an unclaimed parsed expression is not extant.

The Left Denotation (or led) of a token is the procedure, arguments, and lbp applying for
that token when there is a Left, an unclaimed parsed expression.

In his paper,

Pratt, V. R. Top Down Operator Precendence. SIGACT/SIGPLAN Sympo-
sium on Principles of Programming Languages, Boston, 1973, pages 41-51

the left binding power (or Ibp) was an independent property of tokens. I think this
was done in order to allow tokens with NUDs but not LEDs to also be used as delimiters,
which was a problem for statically defined syntaxes. It turns out that dynamically binding
NUDs and LEDs allows them independence.

Chapter 3: Textual Conversion Packages 37

For the rule-defining procedures that follow, the variable tk may be a character, string,
or symbol, or a list composed of characters, strings, and symbols. Each element of tk is
treated as though the procedure were called for each element.

Character tk arguments will match only character tokens; i.e. characters for which no
token-group is assigned. Symbols and strings will both match token strings; i.e. tokens
resulting from token groups.

prec:make-nud tk sop argl ... Function
Returns a rule specifying that sop be called when tk is parsed. If sop is a procedure,
it is called with tk and argl ... as its arguments; the resulting value is incorporated
into the expression being built. Otherwise, (1ist sop argl ...) is incorporated.

If no NUD has been defined for a token; then if that token is a string, it is converted to a
symbol and returned; if not a string, the token is returned.

prec:make-led tk sop argl . .. Function
Returns a rule specifying that sop be called when tk is parsed and left has an un-
claimed parsed expression. If sop is a procedure, it is called with left, tk, and argl
. as its arguments; the resulting value is incorporated into the expression being
built. Otherwise, left is incorporated.

If no LED has been defined for a token, and left is set, the parser issues a warning.

3.1.5 Grammar Rule Definition

Here are procedures for defining rules for the syntax types introduced in Section 3.1.1
[Precedence Parsing Overview|, page 33.

For the rule-defining procedures that follow, the variable tk may be a character, string,
or symbol, or a list composed of characters, strings, and symbols. Each element of tk is
treated as though the procedure were called for each element.

For procedures prec:delim, ..., prec:prestfix, if the sop argument is #f, then the token
which triggered this rule is converted to a symbol and returned. A false sop argument to
the procedures prec:commentfix, prec:matchfix, or prec:inmatchfix has a different meaning.

Character tk arguments will match only character tokens; i.e. characters for which no
token-group is assigned. Symbols and strings will both match token strings; i.e. tokens
resulting from token groups.

prec:delim tk Function
Returns a rule specifying that tk should not be returned from parsing; i.e. tk’s
function is purely syntactic. The end-of-file is always treated as a delimiter.

prec:nofix tk sop Function
Returns a rule specifying the following actions take place when tk is parsed:

e If sop is a procedure, it is called with no arguments; the resulting value is incor-
porated into the expression being built. Otherwise, the list of sop is incorporated.

Chapter 3: Textual Conversion Packages 38

prec:prefix tk sop bp rulel . .. Function
Returns a rule specifying the following actions take place when tk is parsed:
e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e prec:parsel is called with binding-power bp.

e If sop is a procedure, it is called with the expression returned from prec:parsel;
the resulting value is incorporated into the expression being built. Otherwise,
the list of sop and the expression returned from prec:parsel is incorporated.

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.

prec:infix tk sop Ibp bp rulel ... Function
Returns a rule declaring the left-binding-precedence of the token tk is Ibp and speci-
fying the following actions take place when tk is parsed:

e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e One expression is parsed with binding-power Ibp. If instead a delimiter is en-
countered, a warning is issued.

e If sop is a procedure, it is applied to the list of left and the parsed expression;
the resulting value is incorporated into the expression being built. Otherwise,
the list of sop, the left expression, and the parsed expression is incorporated.

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.

prec:nary tk sop bp Function
Returns a rule declaring the left-binding-precedence of the token tk is bp and speci-
fying the following actions take place when tk is parsed:

e Expressions are parsed with binding-power bp as far as they are interleaved with
the token tk.

e If sop is a procedure, it is applied to the list of left and the parsed expressions;
the resulting value is incorporated into the expression being built. Otherwise,
the list of sop, the left expression, and the parsed expressions is incorporated.

prec:postfix tk sop Ibp Function
Returns a rule declaring the left-binding-precedence of the token tk is Ibp and speci-
fying the following actions take place when tk is parsed:

e If sop is a procedure, it is called with the left expression; the resulting value is
incorporated into the expression being built. Otherwise, the list of sop and the
left expression is incorporated.

prec:prestfix tk sop bp rulel . .. Function
Returns a rule specifying the following actions take place when tk is parsed:
e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e Expressions are parsed with binding-power bp until a delimiter is reached.

Chapter 3: Textual Conversion Packages 39

e If sop is a procedure, it is applied to the list of parsed expressions; the resulting
value is incorporated into the expression being built. Otherwise, the list of sop
and the parsed expressions is incorporated.

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.

prec:commentfix tk stp match rulel . .. Function
Returns rules specifying the following actions take place when tk is parsed:

e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e Characters are read until and end-of-file or a sequence of characters is read which
matches the string match.

e If stp is a procedure, it is called with the string of all that was read between the
tk and match (exclusive).

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.
Parsing of commentfix syntax differs from the others in several ways. It reads directly

from input without tokenizing; It calls stp but does not return its value; nay any value.
I added the stp argument so that comment text could be echoed.

prec:matchfix tk sop sep match rulel . .. Function
Returns a rule specifying the following actions take place when tk is parsed:
e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e A rule declaring the token match a delimiter takes effect.

e Expressions are parsed with binding-power 0 until the token match is reached. If
the token sep does not appear between each pair of expressions parsed, a warning
is issued.

e If sop is a procedure, it is applied to the list of parsed expressions; the resulting
value is incorporated into the expression being built. Otherwise, the list of sop
and the parsed expressions is incorporated.

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.

prec:inmatchfix tk sop sep match Ibp rulel ... Function
Returns a rule declaring the left-binding-precedence of the token tk is Ibp and speci-
fying the following actions take place when tk is parsed:

e The rules rulel ... augment and, in case of conflict, override rules currently in
effect.

e A rule declaring the token match a delimiter takes effect.

e Expressions are parsed with binding-power 0 until the token match is reached. If
the token sep does not appear between each pair of expressions parsed, a warning
is issued.

e If sop is a procedure, it is applied to the list of left and the parsed expressions;
the resulting value is incorporated into the expression being built. Otherwise,
the list of sop, the left expression, and the parsed expressions is incorporated.

Chapter 3: Textual Conversion Packages 40

e The ruleset in effect before tk was parsed is restored; rulel ... are forgotten.

3.2 Format (version 3.0)

(require ’format)

3.2.1 Format Interface

format destination format-string . arguments Function
An almost complete implementation of Common LISP format description according
to the CL reference book Common LISP from Guy L. Steele, Digital Press. Backward
compatible to most of the available Scheme format implementations.

Returns #t, #f or a string; has side effect of printing according to format-string. If
destination is #t, the output is to the current output port and #t is returned. If
destination is #f, a formatted string is returned as the result of the call. NEW: If
destination is a string, destination is regarded as the format string; format-string is
then the first argument and the output is returned as a string. If destination is a
number, the output is to the current error port if available by the implementation.
Otherwise destination must be an output port and #t is returned.

format-string must be a string. In case of a formatting error format returns #£f and
prints a message on the current output or error port. Characters are output as if
the string were output by the display function with the exception of those prefixed
by a tilde (7). For a detailed description of the format-string syntax please consult
a Common LISP format reference manual. For a test suite to verify this format
implementation load ‘formatst.scm’. Please send bug reports to lutzeb@cs.tu-
berlin.de.

Note: format is not reentrant, i.e. only one format-call may be executed at a time.

3.2.2 Format Specification (Format version 3.0)

Please consult a Common LISP format reference manual for a detailed description
of the format string syntax. For a demonstration of the implemented directives see
‘formatst.scm’.

This implementation supports directive parameters and modifiers (: and @ characters).
Multiple parameters must be separated by a comma (,). Parameters can be numerical pa-
rameters (positive or negative), character parameters (prefixed by a quote character (),
variable parameters (v), number of rest arguments parameter (#), empty and default pa-
rameters. Directive characters are case independent. The general form of a directive is:

directive ::= ~{directive-parameter,}[:][@]directive-character

directive-parameter ::= [[-|+]{0-9}+ | ’character | v | #]

Chapter 3: Textual Conversion Packages 41

3.2.2.1 Implemented CL Format Control Directives

Documentation syntax: Uppercase characters represent the corresponding control di-
rective characters. Lowercase characters represent control directive parameter descriptions.

“A Any (print as display does).
~@A left pad.

“mincol, colinc, minpad , padcharA
full padding.

~S S-expression (print as write does).
~@S left pad.

“mincol, colinc, minpad, padcharS
full padding.

"D Decimal.
~@D print number sign always.
~:D print comma separated.

“mincol, padchar, commacharD

padding.
“X Hexadecimal.
~eX print number sign always.
“:X print comma separated.

“mincol, padchar, commacharX

padding.
“0 Octal.
~e0 print number sign always.
~:0 print comma separated.

“mincol, padchar, commachar0

padding.
"B Binary.
~@B print number sign always.
~:B print comma separated.

~“mincol, padchar, commacharB
padding.

“nR Radix n.

“n, mincol, padchar, commacharR
padding.

“@R print a number as a Roman numeral.

Chapter 3: Textual Conversion Packages 42

":0R
“:R
"R
“P

e

“F

“E

“$

"

&

~“<newline>

print a number as an “old fashioned” Roman numeral.
print a number as an ordinal English number.

print a number as a cardinal English number.

Plural.

~@P prints y and ies.

P as "P but jumps 1 argument backward.

QP as "@P but jumps 1 argument backward.

Character.

~@c prints a character as the reader can understand it (i.e. #\ prefixing).
~:C prints a character as emacs does (eg. ~C for ASCII 03).

Fixed-format floating-point (prints a flonum like mmm.nnn).

“width, digits, scale, overflowchar, padcharF

~QF If the number is positive a plus sign is printed.
Exponential floating-point (prints a flonum like mmm.nnnEee).

“width, digits, exponentdigits, scale, overflowchar, padchar, exponentcharE

“@E If the number is positive a plus sign is printed.
General floating-point (prints a flonum either fixed or exponential).

“width, digits, exponentdigits, scale, overflowchar , padchar, exponentcharG

~0G If the number is positive a plus sign is printed.
Dollars floating-point (prints a flonum in fixed with signs separated).

~digits, scale, width, padchar$

~e$ If the number is positive a plus sign is printed.

~:0% A sign is always printed and appears before the padding.
“:$ The sign appears before the padding.

Newline.

“n% print n newlines.

print newline if not at the beginning of the output line.
“n& prints “& and then n-1 newlines.

Page Separator.

“n| print n page separators.
Tilde.
“n~ print n tildes.

Continuation Line.

Chapter 3: Textual Conversion Packages 43

~:<newline>
newline is ignored, white space left.

~@<newline>
newline is left, white space ignored.

“T Tabulation.
~@T relative tabulation.
~colnum,colincT
full tabulation.
-7 Indirection (expects indirect arguments as a list).
Q7 extracts indirect arguments from format arguments.
~ (str”) Case conversion (converts by string-downcase).
“:(str”) converts by string-capitalize.
“@(str”) converts by string-capitalize-first.
~:@(str”) converts by string-upcase.
Tk Argument Jumping (jumps 1 argument forward).
~nk jumps n arguments forward.
Tk jumps 1 argument backward.
n:k jumps n arguments backward.
T jumps to the Oth argument.
~n@* jumps to the nth argument (beginning from 0)
~[strO~;strl™~; ...~ ;strn™]
Conditional Expression (numerical clause conditional).
“nl take argument from n.
~e[true test conditional.
[if-else-then conditional.
~; clause separator.
T default clause follows.
“{str7} Iteration (args come from the next argument (a list)).

“n{ at most n iterations.

~:Ao args from next arg (a list of lists).
~e{ args from the rest of arguments.
“re{ args from the rest args (lists).

Up and out.

“n” aborts if n = 0

“n,m" aborts if n = m

“n,m,k~ abortsif n<=m<=k

Chapter 3: Textual Conversion Packages 44

3.2.2.2 Not Implemented CL Format Control Directives

print #f as an empty list (see below).
print #f as an empty list (see below).
Justification.

sorry I don’t understand its semantics completely
y

3.2.2.3 Extended, Replaced and Additional Control Directives

~“mincol, padchar, commachar, commawidthD

“mincol, padchar, commachar, commawidthX

“mincol, padchar, commachar, commawidthQ

“mincol, padchar, commachar, commawidthB

“n, mincol, padchar,commachar, commawidthR

commawidth is the number of characters between two comma characters.

"I print a R4RS complex number as "F~@Fi with passed parameters for ~F.

' Pretty print formatting of an argument for scheme code lists.

“K Same as ~7.

-1 Flushes the output if format destination is a port.

T Print a #\space character
“n_ print n #\space characters.

~/ Print a #\tab character
“n/ print n #\tab characters.

“nC Takes n as an integer representation for a character. No arguments are con-
sumed. n is converted to a character by integer->char. n must be a positive
decimal number.

~:8 Print out readproof. Prints out internal objects represented as #<. . .> as strings
"#<...>" so that the format output can always be processed by read.

“:A Print out readproof. Prints out internal objects represented as #<. . .> as strings
"#<...>" so that the format output can always be processed by read.

“Q Prints information and a copyright notice on the format implementation.
~:Q prints format version.

“F, "E, "G, "$

may also print number strings, i.e. passing a number as a string and format it
accordingly.

Chapter 3: Textual Conversion Packages 45

3.2.2.4 Configuration Variables

Format has some configuration variables at the beginning of ‘format.scm’ to suit the
systems and users needs. There should be no modification necessary for the configuration
that comes with SLIB. If modification is desired the variable should be set after the format
code is loaded. Format detects automatically if the running scheme system implements
floating point numbers and complex numbers.

format:symbol-case-conv
Symbols are converted by symbol->string so the case type of the printed
symbols is implementation dependent. format:symbol-case-conv is a one arg
closure which is either #f (no conversion), string-upcase, string-downcase
or string-capitalize. (default #f)

format:iobj-case-conv
As format:symbol-case-conv but applies for the representation of implementa-
tion internal objects. (default #f)

format:expch
The character prefixing the exponent value in “E printing. (default #\E)

3.2.2.5 Compatibility With Other Format Implementations

SLIB format 2.x:
See ‘format.doc’.

SLIB format 1.4:
Downward compatible except for padding support and ~A, S, “P, "X upper-
case printing. SLIB format 1.4 uses C-style printf padding support which is
completely replaced by the CL format padding style.

MIT C-Scheme 7.1:
Downward compatible except for ~, which is not documented (ignores all char-
acters inside the format string up to a newline character). (7.1 implements ~a,

~s, “newline, ~~, ~%, numerical and variable parameters and :/@ modifiers in
the CL sense).

Elk 1.5/2.0:
Downward compatible except for “A and ~S which print in uppercase. (Elk
implements ~a, s, ~~, and ~% (no directive parameters or modifiers)).

Scheme->C 01nov9l:
Downward compatible except for an optional destination parameter: S2C ac-
cepts a format call without a destination which returns a formatted string. This
is equivalent to a #f destination in S2C. (S2C implements ~a, ~s, ~c, “%, and
~~ (no directive parameters or modifiers)).

This implementation of format is solely useful in the SLIB context because it requires
other components provided by SLIB.

Chapter 3: Textual Conversion Packages 46
3.3 Standard Formatted 1/0
3.3.1 stdio
(require ’stdio)
requires printf and scanf and additionally defines the symbols:
stdin Variable
Defined to be (current-input-port).
stdout Variable
Defined to be (current-output-port).
stderr Variable
Defined to be (current-error-port).
3.3.2 Standard Formatted Output
(require ’printf)
printf format argl . .. Procedure
fprintf port format argl . .. Procedure
sprintf str format argl . .. Procedure
sprintf #f format argl . .. Procedure
sprintf k format argl . .. Procedure

Each function converts, formats, and outputs its argl ... arguments according to
the control string format argument and returns the number of characters output.

printf sends its output to the port (current-output-port). fprintf sends its
output to the port port. sprintf string-set!s locations of the non-constant string
argument str to the output characters.

Two extensions of sprintf return new strings. If the first argument is #£, then the
returned string’s length is as many characters as specified by the format and data; if
the first argument is a non-negative integer k, then the length of the returned string
is also bounded by k.

The string format contains plain characters which are copied to the output stream,
and conversion specifications, each of which results in fetching zero or more of the
arguments argl The results are undefined if there are an insufficient number
of arguments for the format. If format is exhausted while some of the argl ...
arguments remain unused, the excess argl ... arguments are ignored.

The conversion specifications in a format string have the form:

Chapter 3: Textual Conversion Packages 47

% | flags | [width | [. precision | [type | conversion

An output conversion specifications consist of an initial ‘%’ character followed in se-
quence by:

e Zero or more flag characters that modify the normal behavior of the conversion
specification.

=’ Left-justify the result in the field. Normally the result is right-
justified.

+ For the signed ‘%d’ and ‘%1’ conversions and all inexact conversions,
prefix a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start
with a plus or minus sign, prefix it with a space character instead.
Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if both are specified.

‘% For inexact conversions, ‘#’ specifies that the result should always
include a decimal point, even if no digits follow it. For the ‘%g’ and
‘%G’ conversions, this also forces trailing zeros after the decimal point
to be printed where they would otherwise be elided.

For the ‘%o’ conversion, force the leading digit to be ‘0’, as if by
increasing the precision. For ‘%x’ or ‘%X’, prefix a leading ‘0x’ or ‘0X’
(respectively) to the result. This doesn’t do anything useful for the
“%d’, “%i’, or ‘%u’ conversions. Using this flag produces output which
can be parsed by the scanf functions with the ‘%i’ conversion (see
Section 3.3.3 [Standard Formatted Input], page 49).

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after
any indication of sign or base. This flag is ignored if the ‘-’ flag is
also specified, or if a precision is specified for an exact converson.

e An optional decimal integer specifying the minimum field width. If the normal
conversion produces fewer characters than this, the field is padded (with spaces
or zeros per the ‘0’ flag) to the specified width. This is a minimum width; if the
normal conversion produces more characters than this, the field is not truncated.

Alternatively, if the field width is ‘¥’, the next argument in the argument list
(before the actual value to be printed) is used as the field width. The width
value must be an integer. If the value is negative it is as though the ‘-’ flag is
set (see above) and the absolute value is used as the field width.

e An optional precision to specify the number of digits to be written for numeric
conversions and the maximum field width for string conversions. The precision is
specified by a period (‘.”) followed optionally by a decimal integer (which defaults
to zero if omitted).

Alternatively, if the precision is ‘.*’, the next argument in the argument list
(before the actual value to be printed) is used as the precision. The value must
be an integer, and is ignored if negative. If you specify ‘*’ for both the field width

Chapter 3: Textual Conversion Packages 48

and precision, the field width argument precedes the precision argument. The
‘. %’ precision is an enhancement. C library versions may not accept this syntax.

For the ‘%f’, ‘%e’, and ‘4E’ conversions, the precision specifies how many digits
follow the decimal-point character. The default precision is 6. If the precision is
explicitly 0, the decimal point character is suppressed.

For the ‘%g’ and ‘%G’ conversions, the precision specifies how many significant
digits to print. Significant digits are the first digit before the decimal point,
and all the digits after it. If the precision is 0 or not specified for ‘%g’ or ‘%G’,
it is treated like a value of 1. If the value being printed cannot be expressed
accurately in the specified number of digits, the value is rounded to the nearest
number that fits.

For exact conversions, if a precision is supplied it specifies the minimum number
of digits to appear; leading zeros are produced if necessary. If a precision is not
supplied, the number is printed with as many digits as necessary. Converting an
exact ‘0’ with an explicit precision of zero produces no characters.

e An optional one of ‘1’, ‘h’ or ‘L’, which is ignored for numeric conversions. It is
an error to specify these modifiers for non-numeric conversions.

e A character that specifies the conversion to be applied.

3.3.2.1 Exact Conversions

‘v, ‘B’ Print an integer as an unsigned binary number.
Note: ‘%’ and ‘%B’ are SLIB extensions.
‘@, ‘4’ Print an integer as a signed decimal number. ‘%d’ and ‘%i’ are synony-

mous for output, but are different when used with scanf for input (see
Section 3.3.3 [Standard Formatted Input], page 49).

‘o’ Print an integer as an unsigned octal number.
‘u’ Print an integer as an unsigned decimal number.
‘%)X Print an integer as an unsigned hexadecimal number. ‘%x’ prints using the

digits ‘0123456789abcdef’. ‘%X’ prints using the digits ‘0123456789ABCDEF".

3.3.2.2 Inexact Conversions

‘£ Print a floating-point number in fixed-point notation.

‘e’ ‘E’ Print a floating-point number in exponential notation. ‘Je’ prints ‘e’
between mantissa and exponont. ‘%E’ prints ‘E’ between mantissa and
exponont.

‘g, ‘@ Print a floating-point number in either fixed or exponential notation,

whichever is more appropriate for its magnitude. Unless an ‘#’ flag has
been supplied, trailing zeros after a decimal point will be stripped off.
‘%g’ prints ‘e’ between mantissa and exponont. ‘%G’ prints ‘E’ between
mantissa and exponent.

Chapter 3: Textual Conversion Packages 49

‘k’, ‘K’ Print a number like ‘%g’, except that an SI prefix is output after the
number, which is scaled accordingly. ‘%K’ outputs a space between number

and prefix, ‘%k’ does not.

)

3.3.2.3 Other Conversions

c Print a single character. The ‘-’ flag is the only one which can be specified.
It is an error to specify a precision.

s Print a string. The ‘=’ flag is the only one which can be specified. A pre-
cision specifies the maximum number of characters to output; otherwise
all characters in the string are output.

‘a’, ‘N Print a scheme expression. The ‘=’ flag left-justifies the output. The ‘#’
flag specifies that strings and characters should be quoted as by write
(which can be read using read); otherwise, output is as display prints.
A precision specifies the maximum number of characters to output; oth-
erwise as many characters as needed are output.

Note: ‘%a’ and ‘%A’ are SLIB extensions.

A Print a literal ‘%4’ character. No argument is consumed. It is an error to
specify flags, field width, precision, or type modifiers with ‘%%’.

3.3.3 Standard Formatted Input

(require ’scanf)

scanf-read-list format Function
scanf-read-list format port Function
scanf-read-list format string Function
scanf format argl . .. Macro
fscanf port format argl . .. Macro
sscanf str format argl . .. Macro

Each function reads characters, interpreting them according to the control string
format argument.

scanf-read-list returns a list of the items specified as far as the input matches

format. scanf, fscanf, and sscanf return the number of items successfully matched

and stored. scanf, fscanf, and sscanf also set the location corresponding to argl
. using the methods:

symbol set!

car expression
set-car!

cdr expression
set-cdr!

Chapter 3: Textual Conversion Packages 50

vector-ref expression
vector-set!

substring expression
substring-move-left!

The argument to a substring expression in argl ... must be a non-constant string.
Characters will be stored starting at the position specified by the second argument
to substring. The number of characters stored will be limited by either the position
specified by the third argument to substring or the length of the matched string,
whichever is less.

The control string, format, contains conversion specifications and other characters
used to direct interpretation of input sequences. The control string contains:

e White-space characters (blanks, tabs, newlines, or formfeeds) that cause input
to be read (and discarded) up to the next non-white-space character.

e An ordinary character (not ‘%’) that must match the next character of the input
stream.

e Conversion specifications, consisting of the character ‘%’, an optional assignment
suppressing character ‘*’, an optional numerical maximum-field width, an op-
tional ‘1’, ‘h’ or ‘L’ which is ignored, and a conversion code.

Unless the specification contains the ‘n’ conversion character (described below), a
conversion specification directs the conversion of the next input field. The result of
a conversion specification is returned in the position of the corresponding argument
points, unless ‘*’ indicates assignment suppression. Assignment suppression provides
a way to describe an input field to be skipped. An input field is defined as a string
of characters; it extends to the next inappropriate character or until the field width,
if specified, is exhausted.

Note: This specification of format strings differs from the ANSI C and
POSIX specifications. In SLIB, white space before an input field is not
skipped unless white space appears before the conversion specification in
the format string. In order to write format strings which work identically
with ANSI C and SLIB, prepend whitespace to all conversion specifica-
tions except ‘[’ and ‘c’.

The conversion code indicates the interpretation of the input field; For a suppressed
field, no value is returned. The following conversion codes are legal:

A A single % is expected in the input at this point; no value is returned.
‘a’, ‘D’ A decimal integer is expected.

‘o, ‘U An unsigned decimal integer is expected.

‘o', ‘0’ An octal integer is expected.

‘%’ X A hexadecimal integer is expected.

‘i An integer is expected. Returns the value of the next input item, inter-

preted according to C conventions; a leading ‘0’ implies octal, a leading
‘0x’ implies hexadecimal; otherwise, decimal is assumed.

Chapter 3: Textual Conversion Packages 51

n Returns the total number of bytes (including white space) read by scanf.
No input is consumed by %n.

(f’, 4F7’ (e7’ LE7’ £g7’ tG’

A floating-point number is expected. The input format for floating-point
numbers is an optionally signed string of digits, possibly containing a
radix character ‘.’, followed by an optional exponent field consisting of
an ‘E’ or an ‘e’, followed by an optional ‘+’, ‘=’ or space, followed by an
integer.

‘c’, ¢ Width characters are expected. The normal skip-over-white-space is sup-
pressed in this case; to read the next non-space character, use ‘%1s’. If a
field width is given, a string is returned; up to the indicated number of
characters is read.

‘s’, ‘S’ A character string is expected The input field is terminated by a white-
space character. scanf cannot read a null string.

o Indicates string data and the normal skip-over-leading-white-space is sup-
pressed. The left bracket is followed by a set of characters, called the
scanset, and a right bracket; the input field is the maximal sequence of
input characters consisting entirely of characters in the scanset. ‘~’, when
it appears as the first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all characters not con-
tained in the remainder of the scanset string. Construction of the scanset
follows certain conventions. A range of characters may be represented by
the construct first-last, enabling ‘[0123456789]’ to be expressed ‘[0-9]".
Using this convention, first must be lexically less than or equal to last;
otherwise, the dash stands for itself. The dash also stands for itself when
it is the first or the last character in the scanset. To include the right
square bracket as an element of the scanset, it must appear as the first
character (possibly preceded by a ‘") of the scanset, in which case it
will not be interpreted syntactically as the closing bracket. At least one
character must match for this conversion to succeed.

The scanf functions terminate their conversions at end-of-file, at the end of the
control string, or when an input character conflicts with the control string. In the
latter case, the offending character is left unread in the input stream.

3.4 Program and Arguments

3.4.1 Getopt

(require ’getopt)

This routine implements Posix command line argument parsing. Notice that returning
values through global variables means that getopt is not reentrant.

Chapter 3: Textual Conversion Packages 52

optind Variable
Is the index of the current element of the command line. It is initially one. In order
to parse a new command line or reparse an old one, *opting* must be reset.

*optarg™ Variable
Is set by getopt to the (string) option-argument of the current option.

getopt argc argv optstring Procedure
Returns the next option letter in argv (starting from (vector-ref argv *optindx))
that matches a letter in optstring. argv is a vector or list of strings, the Oth of
which getopt usually ignores. argc is the argument count, usually the length of argv.
optstring is a string of recognized option characters; if a character is followed by a
colon, the option takes an argument which may be immediately following it in the
string or in the next element of argv.

optind is the index of the next element of the argv vector to be processed. It is
initialized to 1 by ‘getopt.scm’, and getopt updates it when it finishes with each
element of argv.

getopt returns the next option character from argv that matches a character in
optstring, if there is one that matches. If the option takes an argument, getopt sets
the variable *optarg® to the option-argument as follows:

e If the option was the last character in the string pointed to by an element of argv,
then *optarg* contains the next element of argv, and *optind* is incremented
by 2. If the resulting value of *optind* is greater than or equal to argc, this
indicates a missing option argument, and getopt returns an error indication.

e Otherwise, *optarg™® is set to the string following the option character in that
element of argv, and *optind* is incremented by 1.

If, when getopt is called, the string (vector-ref argv *optindx) either does not
begin with the character #\- or is just "-", getopt returns #f without changing
optind. If (vector-ref argv *optind*) is the string "--", getopt returns #f
after incrementing *optind*.

If getopt encounters an option character that is not contained in optstring, it returns
the question-mark #\7 character. If it detects a missing option argument, it returns
the colon character #\: if the first character of optstring was a colon, or a question-
mark character otherwise. In either case, getopt sets the variable getopt:opt to the
option character that caused the error.

The special option "--" can be used to delimit the end of the options; #£ is returned,
and "--" is skipped.

RETURN VALUE

getopt returns the next option character specified on the command line. A colon #\:
is returned if getopt detects a missing argument and the first character of optstring
was a colon #\:.

A question-mark #\? is returned if getopt encounters an option character not in
optstring or detects a missing argument and the first character of optstring was not
a colon #\:.

Chapter 3: Textual Conversion Packages 53

Otherwise, getopt returns #f when all command line options have been parsed.
Example:

#! /usr/local/bin/scm

;33 This code is SCM specific.
(define argv (program-arguments))
(require ’getopt)

(define opts ":a:b:cd")
(let loop ((opt (getopt (length argv) argv opts)))
(case opt
((#\a) (print "option a: " *optarg*))
((#\b) (print "option b: " *optarg*))
((#\c) (print "option c"))
((#\d) (print "option d"))
((#\7?) (print "error" getopt:opt))
((#\:) (print "missing arg" getopt:opt))
((#£) (if (< *optind* (length argv))
(print "argv[" *optind*x "]="
(list-ref argv *optind*)))
(set! *optind* (+ xoptind* 1))))
(if (< *optind* (length argv))
(loop (getopt (length argv) argv opts))))

(slib:exit)

3.4.2 Getopt—

getopt— argc argv optstring Function
The procedure getopt-- is an extended version of getopt which parses long op-
tion names of the form ‘--hold-the-onions’ and ‘--verbosity-level=extreme’.
Getopt-- behaves as getopt except for non-empty options beginning with ‘--’.

Options beginning with ‘--" are returned as strings rather than characters. If a value
is assigned (using ‘=’) to a long option, *optarg* is set to the value. The ‘=" and
value are not returned as part of the option string.

No information is passed to getopt-- concerning which long options should be ac-
cepted or whether such options can take arguments. If a long option did not have
an argument, *optarg will be set to #£. The caller is responsible for detecting and
reporting errors.

(define opts ":-:b:")
(define argc 5)
(define argv ’("foo" "-b9" "-—f1" "--2=" "-—g3-35234.342" "--"))

(define *optind* 1)

(define *optarg* #f)

(require ’qp)

(do ((1 5 (+ -1 1)))
((zero? 1))

Chapter 3: Textual Conversion Packages 54

(define opt (getopt-- argc argv opts))
(print *optind* opt *optargx)))

_|

2 #\b "9"

3 "f1" #f

4 n"an onn

5 "g3" "35234.342"
5 #f "35234.342"

3.4.3 Command Line

(require ’read-command)

read-command port Function

read-command Function
read-command converts a command line into a list of strings suitable for parsing by
getopt. The syntax of command lines supported resembles that of popular shells.
read-command updates port to point to the first character past the command delim-
iter.

If an end of file is encountered in the input before any characters are found that can
begin an object or comment, then an end of file object is returned.

The port argument may be omitted, in which case it defaults to the value returned
by current-input-port.

The fields into which the command line is split are delimited by whitespace as defined
by char-whitespace?. The end of a command is delimited by end-of-file or unescaped
semicolon (()) or ewline). Any character can be literally included in a field by escaping
it with a backslach ((\)).

The initial character and types of fields recognized are:

A\ The next character has is taken literally and not interpreted as a field
delimiter. If (\) is the last character before a (newline), that is just
ignored. Processing continues from the characters after the as
though the backslash and were not there.

in?

The characters up to the next unescaped (") are taken literally, according
to [R4RS] rules for literal strings (see section “Strings” in Revised(4)
Scheme).

O, One scheme expression is read starting with this character. The read ex-
pression is evaluated, converted to a string (using display), and replaces
the expression in the returned field.

; Semicolon delimits a command. Using semicolons more than one com-
mand can appear on a line. Escaped semicolons and semicolons inside
strings do not delimit commands.

Chapter 3: Textual Conversion Packages 55

The comment field differs from the previous fields in that it must be the first character
of a command or appear after whitespace in order to be recognized. #) can be part
of fields if these conditions are not met. For instance, ab#c is just the field ab#c.

‘W Introduces a comment. The comment continues to the end of the line
on which the semicolon appears. Comments are treated as whitespace
by read-dommand-1line and backslashes before (newline)s in comments are
also ignored.

read-options-file filename Function
read-options-file converts an options file into a list of strings suitable for parsing
by getopt. The syntax of options files is the same as the syntax for command lines,
except that (newline)s do not terminate reading (only () or end of file).

If an end of file is encountered before any characters are found that can begin an
object or comment, then an end of file object is returned.

3.4.4 Parameter lists

(require ’parameters)

Arguments to procedures in scheme are distinguished from each other by their position in
the procedure call. This can be confusing when a procedure takes many arguments, many
of which are not often used.

A parameter-list is a way of passing named information to a procedure. Procedures are
also defined to set unused parameters to default values, check parameters, and combine
parameter lists.

A parameter has the form (parameter-name valuel ...). This format allows for more than
one value per parameter-name.

A parameter-list is a list of parameters, each with a different parameter-name.

make-parameter-list parameter-names Function
Returns an empty parameter-list with slots for parameter-names.

parameter-list-ref parameter-list parameter-name Function
parameter-name must name a valid slot of parameter-list. parameter-list-ref re-
turns the value of parameter parameter-name of parameter-list.

remove-parameter parameter-name parameter-list Function
Removes the parameter parameter-name from parameter-list. remove-parameter
does not alter the argument parameter-list.

If there are more than one parameter-name parameters, an error is signaled.

adjoin-parameters! parameter-list parameterl . . . Procedure
Returns parameter-list with parameterl ... merged in.

Chapter 3: Textual Conversion Packages 56

parameter-list-expand expanders parameter-list Procedure
expanders is a list of procedures whose order matches the order of the parameter-
names in the call to make-parameter-1list which created parameter-list. For each
non-false element of expanders that procedure is mapped over the corresponding
parameter value and the returned parameter lists are merged into parameter-Iist.

This process is repeated until parameter-list stops growing. The value returned from
parameter-list-expand is unspecified.

fill-empty-parameters defaulters parameter-list Function
defaulters is a list of procedures whose order matches the order of the parameter-
names in the call to make-parameter-list which created parameter-list. f£ill-
empty-parameters returns a new parameter-list with each empty parameter replaced
with the list returned by calling the corresponding defaulter with parameter-list as
its argument.

check-parameters checks parameter-list Function
checks is a list of procedures whose order matches the order of the parameter-names
in the call to make-parameter-1list which created parameter-list.

check-parameters returns parameter-list if each check of the corresponding parameter-
list returns non-false. If some check returns #f a warning is signaled.

In the following procedures arities is a list of symbols. The elements of arities can be:
single Requires a single parameter.
optional A single parameter or no parameter is acceptable.

boolean A single boolean parameter or zero parameters is acceptable.

nary Any number of parameters are acceptable.
naryl One or more of parameters are acceptable.
parameter-list->arglist positions arities parameter-list Function

Returns parameter-list converted to an argument list. Parameters of arity type
single and boolean are converted to the single value associated with them. The
other arity types are converted to lists of the value(s).

positions is a list of positive integers whose order matches the order of the parameter-
names in the call to make-parameter-1ist which created parameter-list. The inte-
gers specify in which argument position the corresponding parameter should appear.

3.4.5 Getopt Parameter lists

(require ’getopt-parameters)

Chapter 3: Textual Conversion Packages 57

getopt->parameter-list argc argv optnames arities types aliases desc Function

Returns argv converted to a parameter-list. optnames are the parameter-names.
arities and types are lists of symbols corresponding to optnames.

aliases is a list of lists of strings or integers paired with elements of optnames. Each
one-character string will be treated as a single ‘-’ option by getopt. Longer strings
will be treated as long-named options (see Section 3.4.1 [Getopt], page 51).

If the aliases association list has only strings as its cars, then all the option-arguments
after an option (and before the next option) are adjoined to that option.

If the aliases association list has integers, then each (string) option will take at most
one option-argument. Unoptioned arguments are collected in a list. A ‘-1’ alias will
take the last argument in this list; ‘+1’ will take the first argument in the list. The
aliases -2 then +2; -3 then +3; . . . are tried so long as a positive or negative consecutive
alias is found and arguments remain in the list. Finally a ‘0’ alias, if found, absorbs
any remaining arguments.

In all cases, if unclaimed arguments remain after processing, a warning is signaled
and #f is returned.

getopt->arglist argc argv optnames positions arities types defaulters Function
checks aliases desc . . .
Like getopt->parameter-list, but converts argv to an argument-list as specified
by optnames, positions, arities, types, defaulters, checks, and aliases. If the options
supplied violate the arities or checks constraints, then a warning is signaled and #f
is returned.

These getopt functions can be used with SLIB relational databases. For an example, See
Section 5.2.2 [Using Databases], page 130.

If errors are encountered while processing options, directions for using the options (and
argument strings desc .. .) are printed to current-error-port.
(begin

(set! *optind* 1)

(getopt->parameter-list

2

>("cmd" "-7")

’(flag number symbols symbols string flag2 flag3 num2 num3)

’(boolean optional naryl nary single boolean boolean nary nary)

> (boolean integer symbol symbol string boolean boolean integer integer)

>(("flag" flag)

("f n flag)
("Flag" flag2)
("B" flag3)

("optional" number)
("o" number)
("naryl" symbols)
("N" symbols)
("nary" symbols)

Chapter 3: Textual Conversion Packages 58

("n" symbols)
("single" string)
("s" string)

(uan num2)

("Abs" num3))))

_|
Usage: cmd [OPTION ARGUMENT ...]
-f, ——flag
-0, —-optional=<number>
-n, —-—-nary=<symbols> ...
-N, --naryl=<symbols> ...
-s, ——single=<string>
--Flag
-B
-a <num2> ...
--Abs=<num3> ...
ERROR: getopt->parameter-list "unrecognized option" "-7"

3.4.6 Filenames

(require ’filename) or (require ’glob)

filename:match?? pattern Function

filename:match-ci?? pattern Function
Returns a predicate which returns a non-false value if its string argument matches
(the string) pattern, false otherwise. Filename matching is like glob expansion de-
scribed the bash manpage, except that names beginning with ‘.’ are matched and ‘/’
characters are not treated specially.

These functions interpret the following characters specially in pattern strings:

£ Matches any string, including the null string.
e Matches any single character.
‘L...17 Matches any one of the enclosed characters. A pair of characters sepa-

rated by a minus sign (-) denotes a range; any character lexically between
those two characters, inclusive, is matched. If the first character following
the ‘[’ isa ‘!’ or a ‘~’ then any character not enclosed is matched. A ‘-’
or ‘1’ may be matched by including it as the first or last character in the

set.
filename:substitute?? pattern template Function
filename:substitute-ci?? pattern template Function

Returns a function transforming a single string argument according to glob patterns
pattern and template. pattern and template must have the same number of wildcard
specifications, which need not be identical. pattern and template may have a different

Chapter 3: Textual Conversion Packages 59

number of literal sections. If an argument to the function matches pattern in the sense
of filename:match?? then it returns a copy of template in which each wildcard
specification is replaced by the part of the argument matched by the corresponding
wildcard specification in pattern. A * wildcard matches the longest leftmost string
possible. If the argument does not match pattern then false is returned.

template may be a function accepting the same number of string arguments as there
are wildcard specifications in pattern. In the case of a match the result of applying
template to a list of the substrings matched by wildcard specifications will be returned,
otherwise template will not be called and #f will be returned.

((filename:substitute?? "scm_[0-9]*.html" "scmb5c4_77.htm")
"scm_10.html")

= "scmbc4_10.htm"

((filename:substitute?? "??" "beg?mid?end") "AZ")

= "begAmidZend"

((filename:substitute?? "#nax" "?NA?") "banana")

= "banalNA"
((filename:substitute?? "7*x7?" (lambda (sl s2 s3) (string-append s3 sl1))) "ABZ"
é n ZA“

replace-suffix str old new Function

str can be a string or a list of strings. Returns a new string (or strings) similar to
str but with the suffix string old removed and the suffix string new appended. If the
end of str does not match old, an error is signaled.

(replace-suffix "/usr/local/lib/slib/batch.scm" ".scm" ".c")
= "/usr/local/lib/slib/batch.c"

3.4.7 Batch

(require ’batch)

The batch procedures provide a way to write and execute portable scripts for a variety
of operating systems. Each batch: procedure takes as its first argument a parameter-list
(see Section 3.4.4 [Parameter lists|, page 54). This parameter-list argument parms contains
named associations. Batch currently uses 2 of these:

batch-port
The port on which to write lines of the batch file.

batch-dialect
The syntax of batch file to generate. Currently supported are:
e unix
e dos
e vms
e amigaos
e system

e *unknown*

Chapter 3: Textual Conversion Packages 60

‘batch.scm’ uses 2 enhanced relational tables (see Section 5.2.2 [Using Databases|, page 130)
to store information linking the names of operating-systems to batch-dialectes.

batch:initialize! database Function
Defines operating-system and batch-dialect tables and adds the domain operating-
system to the enhanced relational database database.

batch:platform Variable
Is batch’s best guess as to which operating-system it is running under. batch:platform
is set to (software-type) (see Section 1.5.3 [Configuration|, page 6) unless (software-
type) is unix, in which case finer distinctions are made.

batch:call-with-output-script parms file proc Function

proc should be a procedure of one argument. If file is an output-port, batch:call-
with-output-script writes an appropriate header to file and then calls proc with
file as the only argument. If file is a string, batch:call-with-output-script opens
a output-file of name file, writes an appropriate header to file, and then calls proc
with the newly opened port as the only argument. Otherwise, batch:call-with-
output-script acts as if it was called with the result of (current-output-port) as
its third argument.

The rest of the batch: procedures write (or execute if batch-dialect is system) commands
to the batch port which has been added to parms or (copy-tree parms) by the code:

(adjoin-parameters! parms (list ’batch-port port))

batch:command parms stringl string2 . .. Function
Calls batch:try-command (below) with arguments, but signals an error if batch:try-
command returns #f.

These functions return a non-false value if the command was successfully translated into
the batch dialect and #f if not. In the case of the system dialect, the value is non-false if
the operation suceeded.

batch:try-command parms stringl string2 . . . Function
Writes a command to the batch-port in parms which executes the program named
stringl with arguments string?2

batch:try-chopped-command parms argl arg2 ... list Function
breaks the last argument list into chunks small enough so that the command:

argl arg? ... chunk
fits withing the platform’s maximum command-line length.

batch:try-chopped-command calls batch:try-command with the command and re-
turns non-false only if the commands all fit and batch:try-command of each command
line returned non-false.

Chapter 3: Textual Conversion Packages 61

batch:run-script parms stringl string?2 . . . Function
Writes a command to the batch-port in parms which executes the batch script named
stringl with arguments string2

Note: batch:run-script and batch:try-command are not the same for some oper-
ating systems (VMS).

batch:comment parms linel ... Function
Writes comment lines linel ... to the batch-port in parms.
batch:lines->file parms file linel . .. Function

Writes commands to the batch-port in parms which create a file named file with
contents linel

batch:delete-file parms file Function
Writes a command to the batch-port in parms which deletes the file named file.

batch:rename-file parms old-name new-name Function
Writes a command to the batch-port in parms which renames the file old-name to
new-name.

In addition, batch provides some small utilities very useful for writing scripts:

truncate-up-to path char Function
truncate-up-to path string Function
truncate-up-to path charlist Function

path can be a string or a list of strings. Returns path sans any prefixes ending with
a character of the second argument. This can be used to derive a filename moved
locally from elsewhere.

(truncate-up-to "/usr/local/lib/slib/batch.scm" "/")
= '"batch.scm"

string-join joiner stringl . .. Function
Returns a new string consisting of all the strings stringl ... in order appended
together with the string joiner between each adjacent pair.

must-be-first list1 list2 Function
Returns a new list consisting of the elements of list2 ordered so that if some elements
of list]l are equal? to elements of list2, then those elements will appear first and in
the order of list1.

must-be-last list1 list2 Function
Returns a new list consisting of the elements of list1 ordered so that if some elements
of list2 are equal? to elements of list1, then those elements will appear last and in
the order of list2.

Chapter 3: Textual Conversion Packages 62

os->batch-dialect osname Function
Returns its best guess for the batch-dialect to be used for the operating-system
named osname. os->batch-dialect uses the tables added to database by batch:initialize!.

Here is an example of the use of most of batch’s procedures:

(require ’databases)
(require ’parameters)
(require ’batch)
(require ’glob)

(define batch (create-database #f ’alist-table))
(batch:initialize! batch)

(define my-parameters
(1ist (1ist ’batch-dialect (os->batch-dialect batch:platform))
(1ist ’platform batch:platform)
(1ist ’batch-port (current-output-port)))) ;gets filled in later

(batch:call-with-output-script
my-parameters
"my-batch"
(lambda (batch-port)
(adjoin-parameters! my-parameters (list ’batch-port batch-port))
(and

(batch:comment my-parameters
n

== Write file with C program.")
(batch:rename-file my-parameters "hello.c" "hello.c™")
(batch:lines->file my-parameters "hello.c"

"#include <stdio.h>"

"int main(int argc, char **argv)"

"{Il
" printf(\"hello world\\n\");"
" return O;"
"}r)
(batch:command my-parameters "cc" "-c" "hello.c")
(batch:command my-parameters "cc" "-o" "hello"
(replace-suffix "hello.c" ".c" ".o"))

(batch:command my-parameters "hello")
(batch:delete-file my-parameters "hello")
(batch:delete-file my-parameters "hello.c")
(batch:delete-file my-parameters "hello.o")
(batch:delete-file my-parameters "my-batch")

)))
Produces the file ‘my-batch’:
#!/bin/sh
"my-batch" script created by SLIB/batch Sun Oct 31 18:24:10 1999
== = Write file with C program.

mv —-f hello.c hello.c”™

Chapter 3: Textual Conversion Packages 63

rm -f hello.c

echo ’#include <stdio.h>’>>hello.c

echo ’int main(int argc, char **argv)’>>hello.c
echo ’{’>>hello.c

echo > printf("hello world\n");’>>hello.c
echo ’ return 0;’>>hello.c

echo ’}’>>hello.c

cc -c hello.c

cc -o hello hello.o

hello

rm -f hello

rm -f hello.c

rm -f hello.o

rm -f my-batch

When run, ‘my-batch’ prints

bash$ my-batch
mv: hello.c: No such file or directory
hello world

3.5 HTTML

(require ’html-form)

html:atval txt Function
Returns a string with character substitutions appropriate to send txt as an attribute-
value.

html:plain txt Function

Returns a string with character substitutions appropriate to send txt as an plain-text.

html:meta name content Function
Returns a tag of meta-information suitable for passing as the third argument to
html:head. The tag produced is ‘<META NAME="name" CONTENT="content">’. The
string or symbol name can be ‘author’, ‘copyright’, ‘keywords’, ‘description’,
‘date’, ‘robots’,

html:http-equiv name content Function
Returns a tag of HT'TP information suitable for passing as the third argument to
html:head. The tag produced is ‘META HTTP-EQUIV="name" CONTENT="content">’.
The string or symbol name can be ‘Expires’, ‘PICS-Label’, ‘Content-Type’,
‘Refresh’,

Chapter 3: Textual Conversion Packages 64

html:meta-refresh delay uri Function
html:meta-refresh delay Function
Returns a tag suitable for passing as the third argument to html:head. If uri argu-
ment is supplied, then delay seconds after displaying the page with this tag, Netscape
or IE browsers will fetch and display uri. Otherwise, delay seconds after displaying
the page with this tag, Netscape or IE browsers will fetch and redisplay this page.

html:head title backlink tags . . . Function
html:head title backlink Function
html:head title Function

Returns header string for an HTML page named title. If backlink is a string, it is
used verbatim between the ‘H1’ tags; otherwise title is used. If string arguments tags
. are supplied, then they are included verbatim within the <HEAD> section.

html:body body ... Function
Returns HT'ML string to end a page.

html:pre linel line . .. Function
Returns the strings linel, lines as PREformmated plain text (rendered in fixed-width
font). Newlines are inserted between linel, lines. HTML tags (‘<tag>’) within lines
will be visible verbatim.

html:comment linel line ... Function
Returns the strings linel as HTML comments.

3.6 HTML Forms

html:form method action body . .. Function
The symbol method is either get, head, post, put, or delete. The strings body
form the body of the form. html:form returns the HTML form.

html:hidden name value Function
Returns HTML string which will cause name=value in form.

html:checkbox pname default Function
Returns HTML string for check box.

html:text pname default size . .. Function
Returns HTML string for one-line text box.

html:text-area pname default-list Function
Returns HTML string for multi-line text box.

html:select pname arity default-list foreign-values Function
Returns HTML string for pull-down menu selector.

Chapter 3: Textual Conversion Packages 65

html:buttons pname arity default-list foreign-values Function
Returns HTML string for any-of selector.

form:submit submit-label command Function
form:submit submit-label Function
The string or symbol submit-label appears on the button which submits the form.
If the optional second argument command is given, then *command*=command and
xbutton*=submit-label are set in the query. Otherwise, *command*=submit-label is
set in the query.

form:image submit-label image-src Function
The image-src appears on the button which submits the form.

form:reset Function
Returns a string which generates a reset button.

form:element pname arity default-list foreign-values Function
Returns a string which generates an INPUT element for the field named pname. The
element appears in the created form with its representation determined by its arity
and domain. For domains which are foreign-keys:

single select menu
optional select menu
nary check boxes
naryl check boxes

If the foreign-key table has a field named ‘visible-name’, then the contents of that
field are the names visible to the user for those choices. Otherwise, the foreign-key
itself is visible.

For other types of domains:
single text area
optional text area

boolean check box

nary text area
naryl text area
form:delimited pname doc aliat arity default-list foreign-values Function

Returns a HTML string for a form element embedded in a line of a delimited list.
Apply map form:delimited to the list returned by command->p-specs.

command->p-specs rdb command-table command Function
The symbol command-table names a command table in the rdb relational database.
The symbol command names a key in command-table.

Chapter 3: Textual Conversion Packages 66

command->p-specs returns a list of lists of pname, doc, aliat, arity, default-list, and
foreign-values. The returned list has one element for each parameter of command
command.

This example demonstrates how to create a HTML-form for the ‘build’ command.

(require (in-vicinity (implementation-vicinity) "build.scm"))
(call-with-output-file "buildscm.html"
(lambda (port)
(display
(string-append
(html:head ’commands)
(html:body
(sprintf #f "<H2>Ys:</H2><BLOCKQUOTE>Ys</BLOCKQUOTE>\\n"
(html:plain ’build)
(html:plain ((comtab ’get ’documentation) ’build)))
(html:form
’post
(or "http://localhost:8081/buildscm" "/cgi-bin/build.cgi")
(apply html:delimited-list
(apply map form:delimited
(command->p-specs build ’*commands* ’build)))
(form:submit ’build)
(form:reset))))
port)))

3.7 HTML Tables

(require ’db->html)

html:table options row . .. Function
html:caption caption align Function
html:caption caption Function

align can be ‘top’ or ‘bottom’.

html:heading columns Function
Outputs a heading row for the currently-started table.

html:href-heading columns uris Function
Outputs a heading row with column-names columns linked to URIs uris.

html:linked-row-converter k foreigns Function
The positive integer k is the primary-key-limit (number of primary-keys) of the table.
foreigns is a list of the filenames of foreign-key field pages and #f for non foreign-key
fields.

html:linked-row-converter returns a procedure taking a row for its single argu-
ment. This returned procedure returns the html string for that table row.

Chapter 3: Textual Conversion Packages 67

table-name->filename table-name Function
Returns the symbol table-name converted to a filename.

table->linked-html caption db table-name match-keyl . . . Function
Returns HTML string for db table table-name. Every foreign-key value is linked to
the page (of the table) defining that key.

The optional match-keyl ... arguments restrict actions to a subset of the table. See
Section 5.2.5 [Table Operations|, page 135.

table->linked-page db table-name index-filename arg . . . Function
Returns a complete HTML page. The string index-filename names the page which
refers to this one.

The optional args ... arguments restrict actions to a subset of the table. See Sec-
tion 5.2.5 [Table Operations|, page 135.

catalog->html db caption arg . .. Function
Returns HTML string for the catalog table of db.

3.7.1 HTML editing tables

A client can modify one row of an editable table at a time. For any change submitted, these
routines check if that row has been modified during the time the user has been editing the
form. If so, an error page results.

The behavior of edited rows is:

e If no fields are changed, then no change is made to the table.

e If the primary keys equal null-keys (parameter defaults), and no other user has modified
that row, then that row is deleted.

e If only primary keys are changed, there are non-key fields, and no row with the new
keys is in the table, then the old row is deleted and one with the new keys is inserted.

e If only non-key fields are changed, and that row has not been modified by another user,
then the row is changed to reflect the fields.

e If both keys and non-key fields are changed, and no row with the new keys is in the
table, then a row is created with the new keys and fields.

e If fields are changed, all fields are primary keys, and no row with the new keys is in
the table, then a row is created with the new keys.

After any change to the table, a sync-database of the database is performed.

command:modify-table table-name null-keys update delete retrieve Function
command:modify-table table-name null-keys update delete Function
command:modify-table table-name null-keys update Function
command:modify-table table-name null-keys Function

Returns procedure (of db) which returns procedure to modify row of table-name.
null-keys is the list of null keys which indicate that the row is to be deleted. Optional
arguments update, delete, and retrieve default to the row:update, row:delete, and
row:retrieve of table-name in db.

Chapter 3: Textual Conversion Packages 68

command:make-editable-table rdb table-name arg . . . Function
Given table-name in rdb, creates parameter and *command* tables for editing one row
of table-name at a time. command:make-editable-table returns a procedure taking
a row argument which returns the HTML string for editing that row.

Optional args are expressions (lists) added to the call to command:modify-table.

The domain name of a column determines the expected arity of the data stored in
that column. Domain names ending in:

k7 have arity ‘nary’;
+ have arity ‘naryl’.
html:editable-row-converter k names edit-point edit-converter Function

The positive integer k is the primary-key-limit (number of primary-keys) of the table.
names is a list of the field-names. edit-point is the list of primary-keys denoting the
row to edit (or #f). edit-converter is the procedure called with k, names, and the
row to edit.

html:editable-row-converter returns a procedure taking a row for its single argu-
ment. This returned procedure returns the html string for that table row.

Each HTML table constructed using html : editable-row-converter has first k fields
(typically the primary key fields) of each row linked to a text encoding of these fields
(the result of calling row->anchor). The page so referenced typically allows the user
to edit fields of that row.

3.7.2 HTML databases

db->html-files db dir index-filename caption Function
db must be a relational database. dir must be #f or a non-empty string naming an
existing sub-directory of the current directory.

db->html-files creates an html page for each table in the database db in the sub-
directory named dir, or the current directory if dir is #f. The top level page with the
catalog of tables (captioned caption) is written to a file named index-filename.

db->html-directory db dir index-filename Function

db->html-directory db dir Function
db must be a relational database. dir must be a non-empty string naming an existing
sub-directory of the current directory or one to be created. The optional string index-
filename names the filename of the top page, which defaults to ‘index.html’.

db->html-directory creates sub-directory dir if neccessary, and calls (db->html-
files db dir index-filename dir). The ‘file:’ URI of index-filename is returned.

db->netscape db dir index-filename Function

db->netscape db dir Function
db->netscape is just like db->html-directory, but calls browse-url-netscape with
the uri for the top page after the pages are created.

Chapter 3: Textual Conversion Packages 69

3.8 HTTP and CGI

(require ’http) or (require ’cgi)

http:header alist Function
Returns a string containing lines for each element of alist; the car of which is followed
by ‘: 7, then the cdr.

http:content alist body . .. Function
Returns the concatenation of strings body with the (http:header alist) and the
‘Content-Length’ prepended.

http:byline Variable
String appearing at the bottom of error pages.

http:error-page status-code reason-phrase html-string . . . Function
status-code and reason-phrase should be an integer and string as specified in RFC
2068. The returned page (string) will show the status-code and reason-phrase and
any additional html-strings . . .; with *http:byline* or SLIB’s default at the bottom.

http:forwarding-page title delay uri html-string . . . Function
The string or symbol title is the page title. delay is a non-negative integer. The
html-strings ... are typically used to explain to the user why this page is being
forwarded.

http:forwarding-page returns an HI'ML string for a page which automatically for-
wards to uri after delay seconds. The returned page (string) contains any html-strings
... followed by a manual link to uri, in case the browser does not forward automati-
cally.

http:serve-query serve-proc input-port output-port Function
reads the URI and query-string from input-port. If the query is a valid ‘"POST"’
or ‘"GET"’ query, then http:serve-query calls serve-proc with three arguments,
the request-line, query-string, and header-alist. Otherwise, http:serve-query calls
serve-proc with the request-line, #f, and header-alist.

If serve-proc returns a string, it is sent to output-port. If serve-proc returns a list,
then an error page with number 525 and strings from the list. If serve-proc returns
#{, then a ‘Bad Request’ (400) page is sent to output-port.

Otherwise, http:serve-query replies (to output-port) with appropriate HTML de-
scribing the problem.

This example services HT'TP queries from port-number:

(define socket (make-stream-socket AF_INET 0))
(and (socket:bind socket port-number) ; AF_INET INADDR_ANY

Chapter 3: Textual Conversion Packages 70

(socket:listen socket 10) ; Queue up to 10 requests.
(dynamic-wind
(lambda () #f)
(lambda ()
(do ((port (socket:accept socket) (socket:accept socket)))
(#1)
(let ((iport (duplicate-port port "r"))

(oport (duplicate-port port "w")))
(http:serve-query build:serve iport oport)
(close-port iport)

(close-port oport))
(close-port port)))
(lambda () (close-port socket))))

cgiiserve-query serve-proc Function
reads the URI and query-string from (current-input-port). If the query is a
valid ‘"POST"’ or ‘"GET"’ query, then cgi:serve-query calls serve-proc with three
arguments, the request-line, query-string, and header-alist. Otherwise, cgi:serve-
query calls serve-proc with the request-line, #f, and header-alist.

If serve-proc returns a string, it is sent to (current-input-port). If serve-proc
returns a list, then an error page with number 525 and strings from the list. If serve-
proc returns #f, then a ‘Bad Request’ (400) page is sent to (current-input-port).

Otherwise, cgi:serve-query replies (to (current-input-port)) with appropriate
HTML describing the problem.

make-query-alist-command-server rdb command-table Function
make-query-alist-command-server rdb command-table #t Function
Returns a procedure of one argument. When that procedure is called with a query-
alist (as returned by uri:decode-query, the value of the ‘*command*’ association will
be the command invoked in command-table. If ‘*command*’ is not in the query-alist
then the value of ‘*suggest*’ is tried. If neither name is in the query-alist, then the
literal value ‘*default*’ is tried in command-table.

If optional third argument is non-false, then the command is called with just the
parameter-list; otherwise, command is called with the arguments described in its
table.

3.9 URI

(require ’uri)

Implements Uniform Resource Identifiers (URI) as described in RFC 2396.

Chapter 3: Textual Conversion Packages 71

make-uri Function
make-uri fragment Function
make-uri query fragment Function
make-uri path query fragment Function
make-uri authority path query fragment Function
make-uri scheme authority path query fragment Function

Returns a Uniform Resource Identifier string from component arguments.

html:anchor name Function
Returns a string which defines this location in the (HTML) file as name. The hyper-
text ‘’ will link to this point.

(html:anchor "(section 7)")
=

""

html:link uri highlighted Function
Returns a string which links the highlighted text to uri.

(html:1link (make-uri "(section 7)") "section 7")
=
"section 7"

html:base uri Function
Returns a string specifying the base uri of a document, for inclusion in the HEAD of
the document (see Section 3.5 [HTML], page 62).

html:isindex prompt Function
Returns a string specifying the search prompt of a document, for inclusion in the
HEAD of the document (see Section 3.5 [HTML], page 62).

uri->tree uri-reference base-tree . . . Function
Returns a list of 5 elements corresponding to the parts (scheme authority path query
fragment) of string uri-reference. Elements corresponding to absent parts are #f.

The path is a list of strings. If the first string is empty, then the path is absolute;
otherwise relative.

If the authority component is a Server-based Naming Authority, then it is a list of
the userinfo, host, and port strings (or #f). For other types of authority components
the authority will be a string.

(uri->tree "http://www.ics.uci.edu/pub/ietf/uri/#Related")
=
(http "www.ics.uci.edu" ("" "pub" "ietf" "uri" "") #f "Related")

uric: prefixes indicate procedures dealing with URI-components.

Chapter 3: Textual Conversion Packages 72

uric:encode uri-component allows Function
Returns a copy of the string uri-component in which all unsafe octets (as defined
in RFC 2396) have been ‘), escaped. uric:decode decodes strings encoded by
uric:encode.

uric:decode uri-component Function
Returns a copy of the string uri-component in which each ‘)%’ escaped characters in
uri-component is replaced with the character it encodes. This routine is useful for
showing URI contents on error pages.

3.10 Printing Scheme

3.10.1 Generic-Write

(require ’generic-write)

generic-write is a procedure that transforms a Scheme data value (or Scheme pro-
gram expression) into its textual representation and prints it. The interface to the procedure
is sufficiently general to easily implement other useful formatting procedures such as pretty
printing, output to a string and truncated output.

generic-write obj display? width output Procedure

obj Scheme data value to transform.
display? Boolean, controls whether characters and strings are quoted.
width Extended boolean, selects format:

#f single line format

integer > 0
pretty-print (value = max nb of chars per line)

output Procedure of 1 argument of string type, called repeatedly with successive
substrings of the textual representation. This procedure can return #£f to
stop the transformation.

The value returned by generic-write is undefined.

Examples:

(write obj) = (generic-write obj #f #f display-string)
(display obj) = (generic-write obj #t #f display-string)

where

display-string =
(lambda (s) (for-each write-char (string->list s)) #t)

Chapter 3: Textual Conversion Packages 73

3.10.2 Object-To-String

(require ’object->string)

object->string obj Function
Returns the textual representation of obj as a string.

object->limited-string obj limit Function
Returns the textual representation of obj as a string of length at most limit.

3.10.3 Pretty-Print

(require ’pretty-print)

pretty-print obj Procedure
pretty-print obj port Procedure
pretty-prints obj on port. If port is not specified, current-output-port is used.

Example:

(pretty-print ’((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25)))

((1 2345)

(6 789 10)

(11 12 13 14 15)

(16 17 18 19 20)

(21 22 23 24 25))

S ! I e

pretty-print->string obj Procedure

pretty-print->string obj width Procedure
Returns the string of obj pretty-printed in width columns. If width is not specified,
(output-port-width) is used.

Example:

(pretty-print->string >((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25)))

=
"((12345)
(6 789 10)

(11 12 13 14 15)
(16 17 18 19 20)
(21 22 23 24 25))

Chapter 3: Textual Conversion Packages 74

(pretty-print->string ((1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25))
16)

=
"((1 234 5)

(6 789 10)

(11

12

13

14

15)

(16

17

18

19

20)

(21

22

23

24

25))

(require ’pprint-file)

pprint-file infile Procedure

pprint-file infile outfile Procedure
Pretty-prints all the code in infile. If outfile is specified, the output goes to outfile,
otherwise it goes to (current-output-port).

pprint-filter-file infile proc outfile Function

pprint-filter-file infile proc Function
infile is a port or a string naming an existing file. Scheme source code expressions and
definitions are read from the port (or file) and proc is applied to them sequentially.

outfile is a port or a string. If no outfile is specified then current-output-port is
assumed. These expanded expressions are then pretty-printed to this port.

Whitepsace and comments (introduced by ;) which are not part of scheme expressions
are reproduced in the output. This procedure does not affect the values returned by
current-input-port and current-output-port.

pprint-filter-file can be used to pre-compile macro-expansion and thus can reduce
loading time. The following will write into ‘exp-code.scm’ the result of expanding all
defmacros in ‘code.scm’.
(require ’pprint-file)
(require ’defmacroexpand)
(defmacro:load "my-macros.scm")
(pprint-filter-file "code.scm" defmacro:expand* "exp-code.scm")

Chapter 3: Textual Conversion Packages 75

3.11 Time and Date

If (provided? ’current-time):

The procedures current-time, difftime, and offset-time deal with a calendar time
datatype which may or may not be disjoint from other Scheme datatypes.

current-time Function
Returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds. Note
that the reference time is different from the reference time for get-universal-time
in Section 3.11.3 [Common-Lisp Time], page 77.

difftime caltimel caltime0 Function
Returns the difference (number of seconds) between twe calendar times: caltimel -
caltime(. caltime0 may also be a number.

offset-time caltime offset Function
Returns the calendar time of caltime offset by offset number of seconds (+ caltime
offset).

3.11.1 Time Zone

(require ’time-zone)

TZ-string Data Format
POSIX standards specify several formats for encoding time-zone rules.

:<pathname>
If the first character of <pathname> is ‘/’, then <pathname> specifies
the absolute pathname of a tzfile(5) format time-zone file. Other-
wise, <pathname> is interpreted as a pathname within tzfile:vicinity
(/usr/lib/zoneinfo/) naming a tzfile(5) format time-zone file.

<std><offset>
The string <std> consists of 3 or more alphabetic characters. <offset>
specifies the time difference from GMT. The <offset> is positive if the
local time zone is west of the Prime Meridian and negative if it is east.
<offset> can be the number of hours or hours and minutes (and optionally
seconds) separated by ‘:’. For example, -4:30.

<std><offset><dst>
<dst> is the at least 3 alphabetic characters naming the local daylight-
savings-time.

<std><offset><dst><doffset>
<doffset> specifies the offset from the Prime Meridian when daylight-
savings-time is in effect.

Chapter 3: Textual Conversion Packages 76

The non-tzfile formats can optionally be followed by transition times specifying the
day and time when a zone changes from standard to daylight-savings and back again.

,<date>/<time>,<date>/<time>
The <time>s are specified like the <offset>s above, except that leading ‘+’
and ‘-’ are not allowed.

Each <date> has one of the formats:

J<day> specifies the Julian day with <day> between 1 and 365. Febru-
ary 29 is never counted and cannot be referenced.

<day> This specifies the Julian day with n between 0 and 365.
February 29 is counted in leap years and can be specified.

M<month>.<week>.<day>
This specifies day <day> (0 <= <day> <= 6) of week <week>
(1 <= <week> <= 5) of month <month> (1 <= <month> <=
12). Week 1 is the first week in which day d occurs and week
5 is the last week in which day <day> occurs. Day 0 is a
Sunday.

time-zone Data Type
is a datatype encoding how many hours from Greenwich Mean Time the local time
is, and the Daylight Savings Time rules for changing it.

time-zone TZ-string Function
Creates and returns a time-zone object specified by the string TZ-string. If time-zone
cannot interpret TZ-string, #£ is returned.

tz:params caltime tz Function
tz is a time-zone object. tz:params returns a list of three items:

0. An integer. 0 if standard time is in effect for timezone tz at caltime; 1 if daylight
savings time is in effect for timezone tz at caltime.

1. The number of seconds west of the Prime Meridian timezone tz is at caltime.
2. The name for timezone tz at caltime.

tz:parans is unaffected by the default timezone; inquiries can be made of any time-
zone at any calendar time.

The rest of these procedures and variables are provided for POSIX compatability. Because
of shared state they are not thread-safe.

tzset Function
Returns the default time-zone.

tzset tz Function
Sets (and returns) the default time-zone to tz.

tzset TZ-string Function
Sets (and returns) the default time-zone to that specified by TZ-string.

Chapter 3: Textual Conversion Packages 7

tzset also sets the variables *timezone*, daylight?, and tzname. This function is
automatically called by the time conversion procedures which depend on the time
zone (see Section 3.11 [Time and Date|, page 74).

timezone Variable
Contains the difference, in seconds, between Greenwich Mean Time and local stan-
dard time (for example, in the U.S. Eastern time zone (EST), timezone is 5%60*60).
*timezonex is initialized by tzset.

daylight? Variable
is #t if the default timezone has rules for Daylight Savings Time. Note: daylight?
does not tell you when Daylight Savings Time is in effect, just that the default zone
sometimes has Daylight Savings Time.

tzname Variable
is a vector of strings. Index 0 has the abbreviation for the standard timezone; If
daylight?, then index 1 has the abbreviation for the Daylight Savings timezone.

3.11.2 Posix Time

(require ’posix-time)

Calendar-Time Data Type
is a datatype encapsulating time.

Coordinated Universal Time Data Type
(abbreviated UTC) is a vector of integers representing time:

0. seconds (0 - 61)

minutes (0 - 59)

hours since midnight (0 - 23)

day of month (1 - 31)

month (0 - 11). Note difference from decode-universal-time.

the number of years since 1900. Note difference from decode-universal-time.
day of week (0 - 6)

day of year (0 - 365)

1 for daylight savings, 0 for regular time

e A

gmtime caltime Function
Converts the calendar time caltime to UTC and returns it.

localtime caltime tz Function
Returns caltime converted to UTC relative to timezone tz.

Chapter 3: Textual Conversion Packages 78

localtime caltime Function
converts the calendar time caltime to a vector of integers expressed relative to the
user’s time zone. localtime sets the variable *timezone* with the difference be-
tween Coordinated Universal Time (UTC) and local standard time in seconds (see
Section 3.11.1 [Time Zone], page 74).

gmktime univtime Function
Converts a vector of integers in GMT Coordinated Universal Time (UTC) format to
a calendar time.

mktime univtime Function
Converts a vector of integers in local Coordinated Universal Time (UTC) format to
a calendar time.

mktime univtime tz Function
Converts a vector of integers in Coordinated Universal Time (UTC) format (relative
to time-zone tz) to calendar time.

asctime univtime Function
Converts the vector of integers caltime in Coordinated Universal Time (UTC) format
into a string of the form "Wed Jun 30 21:49:08 1993".

gtime caltime Function
ctime caltime Function
ctime caltime tz Function

Equivalent to (asctime (gmtime caltime)), (asctime (localtime caltime)), and
(asctime (localtime caltime tz)), respectively.

3.11.3 Common-Lisp Time

get-decoded-time Function
Equivalent to (decode-universal-time (get-universal-time)).

get-universal-time Function
Returns the current time as Universal Time, number of seconds since 00:00:00 Jan 1,
1900 GMT. Note that the reference time is different from current-time.

decode-universal-time univtime Function
Converts univtime to Decoded Time format. Nine values are returned:

0. seconds (0 - 61)
1. minutes (0 - 59)
2. hours since midnight
3. day of month
4

. month (1 - 12). Note difference from gmtime and localtime.

Chapter 3: Textual Conversion Packages 79

year (A.D.). Note difference from gmtime and localtime.
day of week (0 - 6)

#t for daylight savings, #f otherwise

hours west of GMT (-24 - +24)

® N oo

Notice that the values returned by decode-universal-time do not match the argu-
ments to encode-universal-time.

encode-universal-time second minute hour date month year Function

encode-universal-time second minute hour date month year time-zone Function
Converts the arguments in Decoded Time format to Universal Time format. If time-
zone is not specified, the returned time is adjusted for daylight saving time. Other-
wise, no adjustment is performed.

Notice that the values returned by decode-universal-time do not match the argu-
ments to encode-universal-time.

3.12 Schmooz

Schmooz is a simple, lightweight markup language for interspersing Texinfo documen-
tation with Scheme source code. Schmooz does not create the top level Texinfo file; it
creates ‘txi’ files which can be imported into the documentation using the Texinfo com-
mand ‘@include’.

(require ’schmooz) defines the function schmooz, which is used to process files. Files
containing schmooz documentation should not contain (require ’schmooz).

schmooz filename.scm . . . Procedure
Filename.scm should be a string ending with ‘.scm’ naming an existing file contain-
ing Scheme source code. schmooz extracts top-level comments containing schmooz
commands from filename.scm and writes the converted Texinfo source to a file named
filename.txi.

schmooz filename.texi . .. Procedure
schmooz filename.tex . .. Procedure
schmooz filename.txi . .. Procedure

Filename should be a string naming an existing file containing Texinfo source code.
For every occurrence of the string ‘@include filename.txi’ within that file, schmooz
calls itself with the argument ‘filename.scm’.

Schmooz comments are distinguished (from non-schmooz comments) by their first line,
which must start with an at-sign (@) preceded by one or more semicolons (;). A schmooz
comment ends at the first subsequent line which does not start with a semicolon. Currently
schmooz comments are recognized only at top level.

Schmooz comments are copied to the Texinfo output file with the leading contiguous
semicolons removed. Certain character sequences starting with at-sign are treated specially.
Others are copied unchanged.

Chapter 3: Textual Conversion Packages 80

A schmooz comment starting with ‘@body’ must be followed by a Scheme definition.
All comments between the ‘@body’ line and the definition will be included in a Texinfo
definition, either a ‘@defun’ or a ‘@defvar’, depending on whether a procedure or a variable
is being defined.

Within the text of that schmooz comment, at-sign followed by ‘0’ will be replaced by
Q@code{procedure-name} if the following definition is of a procedure; or @var{variable}
if defining a variable.

An at-sign followed by a non-zero digit will expand to the variable citation of that
numbered argument: ‘@var{argument-name}’.

If more than one definition follows a ‘@body’ comment line without an intervening blank
or comment line, then those definitions will be included in the same Texinfo definition using
‘@defvarx’ or ‘@defunx’, depending on whether the first definition is of a variable or of a
procedure.

Schmooz can figure out whether a definition is of a procedure if it is of the form:
‘(define (<identifier> <arg> ...) <expression>)’

or if the left hand side of the definition is some form ending in a lambda expression. Ob-
viously, it can be fooled. In order to force recognition of a procedure definition, start the
documentation with ‘@args’ instead of ‘@body’. ‘Gargs’ should be followed by the argument
list of the function being defined, which may be enclosed in parentheses and delimited by
whitespace, (as in Scheme), enclosed in braces and separated by commas, (as in Texinfo),
or consist of the remainder of the line, separated by whitespace.

For example:
;;0args argl args ...
; ;@0 takes argument @1 and any number of 02
(define myfun (some-function-returning-magic))

Will result in:
@defun myfun argl args @dots{}

Qcode{myfun} takes argument @var{argl} and any number of @var{args}
Q@end defun

‘@args’ may also be useful for indicating optional arguments by name. If ‘@args’ occurs
inside a schmooz comment section, rather than at the beginning, then it will generate a
‘@defunx’ line with the arguments supplied.

If the first at-sign in a schmooz comment is immediately followed by whitespace, then
the comment will be expanded to whatever follows that whitespace. If the at-sign is followed
by a non-whitespace character then the at-sign will be included as the first character of the
expansion. This feature is intended to make it easy to include Texinfo directives in schmooz
comments.

Chapter 4: Mathematical Packages

4 Mathematical Packages

4.1 Bit-Twiddling

(require ’logical)

81

The bit-twiddling functions are made available through the use of the logical package.
logical is loaded by inserting (require ’logical) before the code that uses these
functions. These functions behave as though operating on integers in two’s-complement

representation.

4.1.1 Bitwise Operations

logand nl nl
Returns the integer which is the bit-wise AND of the two integer arguments.

Example:

(number->string (logand #b1100 #b1010) 2)
: “1000"

logior nl n2
Returns the integer which is the bit-wise OR of the two integer arguments.

Example:

(number->string (logior #b1100 #b1010) 2)
= "1110"

logxor nl n2
Returns the integer which is the bit-wise XOR of the two integer arguments.

Example:

(number->string (logxor #b1100 #b1010) 2)
= 110"

lognot n
Returns the integer which is the 2s-complement of the integer argument.

Example:

(number->string (lognot #b10000000) 2)
= "-10000001"

(number->string (lognot #b0) 2)
= n_qn

Function

Function

Function

Function

Chapter 4: Mathematical Packages 82

bitwise-if mask n0 nl Function
Returns an integer composed of some bits from integer n0 and some from integer nl.
A bit of the result is taken from n0 if the corresponding bit of integer mask is 1 and
from nl if that bit of mask is 0.

logtest j k Function
(logtest j k) = (not (zero? (logand j k)))

(logtest #b0100 #b1011) = #f
(Logtest #b0100 #b0111) = #t

logcount n Function
Returns the number of bits in integer n. If integer is positive, the 1-bits in its binary
representation are counted. If negative, the 0-bits in its two’s-complement binary
representation are counted. If 0, 0 is returned.

Example:
(logcount #b10101010)
= 4
(Logcount 0)
= 0
(logcount -2)
=1

4.1.2 Bit Within Word

logbit? index j Function
(logbit? index j) = (logtest (integer-expt 2 index) j)

(logbit? 0 #b1101) = #t
(logbit? 1 #b1101) = #f
(logbit? 2 #b1101) = #t
(logbit? 3 #b1101) = #t
(logbit? 4 #b1101) = #f

copy-bit index from bit Function
Returns an integer the same as from except in the indexth bit, which is 1 if bit is #t
and 0 if bit is #£.

Example:
(number->string (copy-bit 0 0 #t) 2) = nqn
(number->string (copy-bit 2 0 #t) 2) = "100"

(number->string (copy-bit 2 #b1111l #f) 2) = "1011"

4.1.3 Fields of Bits

Chapter 4: Mathematical Packages 83

bit-field n start end Function
Returns the integer composed of the start (inclusive) through end (exclusive) bits of
n. The startth bit becomes the 0-th bit in the result.

This function was called bit-extract in previous versions of SLIB.
Example:
(number->string (bit-field #b1101101010 0 4) 2)
:> n 10 10 n

(number->string (bit-field #b1101101010 4 9) 2)
= "10110"

copy-bit-field to start end from Function
Returns an integer the same as to except possibly in the start (inclusive) through end
(exclusive) bits, which are the same as those of from. The 0-th bit of from becomes
the startth bit of the result.

Example:

(number->string (copy-bit-field #b1101101010 0 4 0) 2)
= "1101100000"

(number->string (copy-bit-field #b1101101010 0 4 -1) 2)
= "1101101111"

ash int count Function
Returns an integer equivalent to (inexact->exact (floor (* int (expt 2 count)))).

Example:

(number->string (ash #bl 3) 2)
: ||1000||

(number->string (ash #b1010 -1) 2)
= "101"

integer-length n Function
Returns the number of bits neccessary to represent n.
Example:
(integer-length #b10101010)
= 8
(integer-length 0)
= 0

(integer-length #b1111)
= 4

integer-expt n k Function
Returns n raised to the non-negative integer exponent k.
Example:
(integer-expt 2 5)
= 32
(integer-expt -3 3)
= =27

Chapter 4: Mathematical Packages 84

4.1.4 Bit order and Lamination

bit-reverse k n Function
Returns the low-order k bits of n with the bit order reversed. The low-order bit of n
is the high order bit of the returned value.

(number->string (bit-reverse 8 #xa7) 16)

: n e5 n
integer->list k len Function
integer->list k Function

integer->list returns a list of len booleans corresponding to each bit of the given
integer. #t is coded for each 1; #f for 0. The len argument defaults to (integer-
length k).

list->integer list Function
list->integer returns an integer formed from the booleans in the list list, which
must be a list of booleans. A 1 bit is coded for each #t; a 0 bit for #f.

integer->list and list->integer are inverses so far as equal? is concerned.

booleans->integer booll ... Function
Returns the integer coded by the booll ... arguments.

bitwise:laminate kI ... Function
Returns an integer composed of the bits of kI . .. interlaced in argument order. Given
k1, ... kn, the n low-order bits of the returned value will be the lowest-order bit of

each argument.

bitwise:delaminate count k Function
Returns a list of count integers comprised of every counth bit of the integer k.

For any non-negative integers k and count:

(eqv? k (bitwise:laminate (bitwise:delaminate count k)))

4.1.5 Gray code

A Gray code is an ordering of non-negative integers in which exactly one bit differs between
each pair of successive elements. There are multiple Gray codings. An n-bit Gray code
corresponds to a Hamiltonian cycle on an n-dimensional hypercube.

Gray codes find use communicating incrementally changing values between asynchronous
agents. De-laminated Gray codes comprise the coordinates of Hilbert’s space-filling curves.

integer->gray-code k Function
Converts k to a Gray code of the same integer-length as k.

gray-code->integer k Function
Converts the Gray code k to an integer of the same integer-length as k.

For any non-negative integer k,

(eqv? k (gray-code->integer (integer->gray-code k)))

Chapter 4: Mathematical Packages 85

= ki1 k2 Function
gray-code<? kil k2 Function
gray-code>? kil k2 Function
gray-code<="? kil k2 Function
gray-code>="7 kil k2 Function

These procedures return #t if their Gray code arguments are (respectively): equal,
monotonically increasing, monotonically decreasing, monotonically nondecreasing, or
monotonically nonincreasing.

For any non-negative integers k1 and k2, the Gray code predicate of (integer-
>gray-code k1) and (integer->gray-code k2) will return the same value as the
corresponding predicate of k1 and k2.

4.2 Modular Arithmetic

(require ’modular)

mod xI1 x2
rem xI x2

Function
Function

These procedures implement the Common-Lisp functions of the same names. The
real number x2 must be non-zero. mod returns (- xI (* x2 (floor (/ x1 x2)))).
rem returns (- xI (x x2 (truncate (/ xI x2)))).

If xI and x2 are integers, then mod behaves like modulo and rem behaves like

remainder.

(mod -90 360) = 270

(rem -90 180) = -90

(mod 540 360) = 180

(rem 540 360) = 180

(mod (* 5/2 pi) (* 2 pi)) = 1.5707963267948965
(rem (* -5/2 pi) (x 2 pi)) = -1.5707963267948965

extended-euclid nl n2

Function

Returns a list of 3 integers (d x y) such that d = ged(nl, n2) = nl * x + n2 *y.

symmetric:modulus n Function
Returns (quotient (+ -1 n) -2) for positive odd integer n.
modulus->integer modulus Function

Returns the non-negative integer characteristic of the ring formed when modulus is

used with modular: procedures.

Chapter 4: Mathematical Packages 86

modular:normalize modulus n Function
Returns the integer (modulo n (modulus->integer modulus)) in the representation
specified by modulus.

The rest of these functions assume normalized arguments; That is, the arguments are con-
strained by the following table:

For all of these functions, if the first argument (modulus) is:

positive?
Work as before. The result is between 0 and modulus.

zero? The arguments are treated as integers. An integer is returned.

negative?
The arguments and result are treated as members of the integers modulo (+ 1
(x -2 modulus)), but with symmetric representation; i.e. (<= (- modulus) n
modulus).

If all the arguments are fixnums the computation will use only fixnums.

modular:invertable? modulus k Function
Returns #t if there exists an integer n such that k * n = 1 mod modulus, and #f
otherwise.

modular:invert modulus n2 Function

Returns an integer n such that 1 = (n * n2) mod modulus. If n2 has no inverse mod
modulus an error is signaled.

modular:negate modulus n2 Function
Returns (—n2) mod modulus.

modular:+ modulus n2 n3 Function
Returns (n2 + n3) mod modulus.

modular:— modulus n2 n3 Function
Returns (n2 — n3) mod modulus.

modular:* modulus n2 n3 Function
Returns (n2 * n3) mod modulus.

The Scheme code for modular:* with negative modulus is not completed for fixnum-
only implementations.

modular:expt modulus n2 n3 Function
Returns (n2 ~ n3) mod modulus.

Chapter 4: Mathematical Packages 87

4.3 Prime Numbers

(require ’factor)

prime:prngs Variable
prime:prngs is the random-state (see Section 4.4 [Random Numbers|, page 86) used
by these procedures. If you call these procedures from more than one thread (or from
interrupt), random may complain about reentrant calls.

Note: The prime test and generation procedures implement (or use) the Solovay-
Strassen primality test. See

e Robert Solovay and Volker Strassen, A Fast Monte-Carlo Test for Primality, SIAM
Journal on Computing, 1977, pp 84-85.

jacobi-symbol p g Function
Returns the value (+1, —1, or 0) of the Jacobi-Symbol of exact non-negative integer
p and exact positive odd integer q.

prime:trials Variable
prime:trials the maxinum number of iterations of Solovay-Strassen that will be done
to test a number for primality.

prime? n Function
Returns #£ if n is composite; #t if n is prime. There is a slight chance (expt 2 (-
prime:trials)) that a composite will return #t.

primes< start count Function
Returns a list of the first count prime numbers less than start. If there are fewer than
count prime numbers less than start, then the returned list will have fewer than start
elements.

primes> start count Function
Returns a list of the first count prime numbers greater than start.

factor k Function
Returns a list of the prime factors of k. The order of the factors is unspecified. In
order to obtain a sorted list do (sort! (factor k) <).

4.4 Random Numbers

(require ’random)

A pseudo-random number generator is only as good as the tests it passes. George
Marsaglia of Florida State University developed a battery of tests named DIEHARD (

http://stat.fsu.edu/~geo/diehard.html

Chapter 4: Mathematical Packages 88

http://stat.fsu.edu/ geo/diehard.html). ‘diehard.c’ has a bug which the patch
http://swissnet.ai.mit.edu/ftpdir/users/jaffer/diehard.c.pat corrects.

SLIB’s new PRNG generates 8 bits at a time. With the degenerate seed ‘0’, the
numbers generated pass DIEHARD; but when bits are combined from sequential bytes,
tests fail. With the seed ‘http://swissnet.ai.mit.edu/"jaffer/SLIB.html’, all of those
tests pass.

random n Function

random n state Function
Accepts a positive integer or real n and returns a number of the same type between
zero (inclusive) and n (exclusive). The values returned by random are uniformly
distributed from 0 to n.

The optional argument state must be of the type returned by (seed->random-state)
or (make-random-state). It defaults to the value of the variable *random-statex.
This object is used to maintain the state of the pseudo-random-number generator and
is altered as a side effect of calls to random.

random-state Variable
Holds a data structure that encodes the internal state of the random-number generator
that random uses by default. The nature of this data structure is implementation-
dependent. It may be printed out and successfully read back in, but may or may not
function correctly as a random-number state object in another implementation.

copy-random-state state Function
Returns a new copy of argument state.

copy-random-state Function
Returns a new copy of *random-state.

seed->random-state seed Function
Returns a new object of type suitable for use as the value of the variable *random-
state* or as a second argument to random. The number or string seed is used to
initialize the state. If seed->random-state is called twice with arguments which are
equal?, then the returned data structures will be equal?. Calling seed->random-
state with unequal arguments will nearly always return unequal states.

make-random-state Function

make-random-state obj Function
Returns a new object of type suitable for use as the value of the variable *random-
state* or as a second argument to random. If the optional argument obj is given, it
should be a printable Scheme object; the first 50 characters of its printed representa-
tion will be used as the seed. Otherwise the value of *random-state* is used as the
seed.

If inexact numbers are supported by the Scheme implementation, ‘randinex.scm’ will
be loaded as well. ‘randinex.scm’ contains procedures for generating inexact distributions.

http://stat.fsu.edu/~geo/diehard.html
http://stat.fsu.edu/~geo/diehard.html
http://swissnet.ai.mit.edu/ftpdir/users/jaffer/diehard.c.pat
http://swissnet.ai.mit.edu/ftpdir/users/jaffer/diehard.c.pat

Chapter 4: Mathematical Packages 89

random:uniform Function
random:uniform state Function
Returns an uniformly distributed inexact real random number in the range between
0 and 1.
random:exp Function
random:exp state Function

Returns an inexact real in an exponential distribution with mean 1. For an exponen-
tial distribution with mean u use (* u (random:exp)).

random:normal Function

random:normal state Function
Returns an inexact real in a normal distribution with mean 0 and standard de-
viation 1. For a normal distribution with mean m and standard deviation d use
(+ m (* d (random:normal))).

random:normal-vector! vect Function

random:normal-vector! vect state Function
Fills vect with inexact real random numbers which are independent and standard
normally distributed (i.e., with mean 0 and variance 1).

random:hollow-sphere! vect Function

random:hollow-sphere! vect state Function
Fills vect with inexact real random numbers the sum of whose squares is equal to 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed over the surface of the unit n-shere.

random:solid-sphere! vect Function

random:solid-sphere! vect state Function
Fills vect with inexact real random numbers the sum of whose squares is less than 1.0.
Thinking of vect as coordinates in space of dimension n = (vector-length vect),
the coordinates are uniformly distributed within the unit n-shere. The sum of the
squares of the numbers is returned.

4.5 Fast Fourier Transform

(require ’fft)

fft array Function
array is an array of (expt 2 n) numbers. £ft returns an array of complex numbers
comprising the Discrete Fourier Transform of array.

fft-1 array Function
fft-1 returns an array of complex numbers comprising the inverse Discrete Fourier
Transform of array.

Chapter 4: Mathematical Packages 90

(fft-1 (£ft array)) will return an array of values close to array.
(fft °#(1 0+i -1 0-i 1 0+i -1 0-1)) =

#(0.0 0.0 0.0+628.0783185208527e-18i 0.0
0.0 0.0 8.0-628.0783185208527e-18i 0.0)

(fft-1 ’#(0 0 0 0 0 0 8 O)) =

#(1.0 -61.23031769111886e-18+1.01 -1.0 61.23031769111886e-18-1.01
1.0 -61.23031769111886e-18+1.0i -1.0 61.23031769111886e-18-1.01)

4.6 Cyclic Checksum

(require ’make-crc)

make-port-crc Function

make-port-crc degree Function
Returns an expression for a procedure of one argument, a port. This procedure reads
characters from the port until the end of file and returns the integer checksum of the
bytes read.

The integer degree, if given, specifies the degree of the polynomial being computed —
which is also the number of bits computed in the checksums. The default value is 32.

make-port-crc generator Function
The integer generator specifies the polynomial being computed. The power of 2
generating each 1 bit is the exponent of a term of the polynomial. The value of
generator must be larger than 127.

make-port-crc degree generator Function
The integer generator specifies the polynomial being computed. The power of 2 gen-
erating each 1 bit is the exponent of a term of the polynomial. The bit at position
degree is implicit and should not be part of generator. This allows systems with num-
bers limited to 32 bits to calculate 32 bit checksums. The default value of generator
when degree is 32 (its default) is:

(make-port-crc 32 #b00000100110000010001110110110111)

Creates a procedure to calculate the P1003.2/D11.2 (POSIX.2) 32-bit checksum from
the polynomial:

32 26 23 22 16 12 11
(x + x + x + x + x + x + x +

10 8 7 5 4 2 1
X +x +x +x +x +x +x +1) mod?2

(require ’make-crc)

(define crc32 (slib:eval (make-port-crc)))

(define (file-check-sum file) (call-with-input-file file crc32))
(file-check-sum (in-vicinity (library-vicinity) "ratize.scm"))

Chapter 4: Mathematical Packages 91

= 157103930

4.7 Plotting

(require ’charplot)

charplot:dimensions Variable
A list of the maximum height (number of lines) and maximum width (number of
columns) for the graph, its scales, and labels.

The default value for charplot:dimensions is the output-port-height and output-
port-width of current-output-port.

plot coords x-label y-label Procedure
coords is a list or vector of coordinates, lists of x and y coordinates. x-label and
y-label are strings with which to label the x and y axes.

Example:

(require ’charplot)
(set! charplot:dimensions ’(19 45))

(define (make-points n)
(if (zero? n)
> ()
(cons (cons (/ n 6) (sin (/ n 6))) (make-points (1- n)))))

(plot (make-points 37) "x" "Sin(x)")
_|

Chapter 4: Mathematical Packages 92

plot func x1 x2 Procedure

plot func xI x2 npts Procedure
Plots the function of one argument func over the range x1 to x2. If the optional
integer argument npts is supplied, it specifies the number of points to evaluate func
at.

(plot sin O (x 2 pi))
_|

Chapter 4: Mathematical Packages 93

(@)
~
ol
|
*
*

|
(@)
a1

|
*
*
*

histograph data label Procedure
Creates and displays a histogram of the numerical values contained in vector or list
data

(require ’random)
(histograph (do ((idx 99 (+ -1 idx))
(st ’() (cons (* .02 (random:normal)) 1st)))
((negative? idx) 1lst))
"normal")

Chapter 4: Mathematical Packages 94

1/-IT T IIT IIIIIIT IIIIIIIIIII IIIIIII
| IT I IIT IIIIIIT IIIIIIIIIIT IIIIIII
O|-ITIIITIIIIIIITIIIIIIIIIIIIIIIIIIIIIIIL -~~~ |

9|- I
I I
8- I
I I I
71- III ITI I I
I IITI ITI I
61- IITII I I I
I IITII I I
5|- III ITI I TIII |
I III ITI I TIII
4|- IIII IIIII III I
I IIII IIIII III
3= IIII IIIIIIIII I
I IIII IIIIIIIII
2= IIIIIII IIIIIIIII ITI
I IIIIIII IIIIIIIII ITII
I
I

normal -0.025 0 0.025 0.05

4.8 Solid Modeling

(require ’solid)

http://swissnet.ai.mit.edu/"jaffer/Solid/#Example gives an example use of this
package.

vrml node . .. Function
Returns the VRMLI7 string (including header) of the concatenation of strings nodes,

vrml-append nodel node?2 . .. Function
Returns the concatenation with interdigitated newlines of strings nodel, node2,

vrml-to-file file node . .. Function
Writes to file named file the VRML97 string (including header) of the concatenation
of strings nodes,

world:info title info . .. Function
Returns a VRMLI7 string setting the title of the file in which it appears to title.
Additional strings info, ... are comments.

VRMLI7 strings passed to vrml and vrml-to-file as arguments will appear in the
resulting VRML code. This string turns off the headlight at the viewpoint:

Chapter 4: Mathematical Packages 95

" NavigationInfo {headlight FALSE}"

scene:panorama front right back left top bottom Function
Specifies the distant images on the inside faces of the cube enclosing the virtual world.

scene:sphere colors angles Function
colors is a list of color objects. Each may be of type Section 4.9.1 [Color Data-Type],
page 99, a 24-bit sSRGB integer, or a list of 3 numbers between 0.0 and 1.0.

angles is a list of non-increasing angles the same length as colors. Each angle is
between 90 and -90 degrees. If 90 or -90 are not elements of angles, then the color at
the zenith and nadir are taken from the colors paired with the angles nearest them.

scene: sphere fills horizontal bands with interpolated colors on the backgroud sphere
encasing the world.

scene:sky-and-dirt Function
Returns a blue and brown backgroud sphere encasing the world.

scene:sky-and-grass Function
Returns a blue and green backgroud sphere encasing the world.

scene:sun latitude julian-day hour turbidity strength Function
scene:sun latitude julian-day hour turbidity Function
latitude is the virtual place’s latitude in degrees. julian-day is an integer from 0 to
366, the day of the year. hour is a real number from 0 to 24 for the time of day; 12
is noon. turbidity is the degree of fogginess described in See Section 4.9.7 [Daylight],
page 113.

scene:sun returns a bright yellow, distant sphere where the sun would be at hour
on julian-day at latitude. If strength is positive, included is a light source of strength
(default 1).

scene:overcast latitude julian-day hour turbidity strength Function

scene:overcast latitude julian-day hour turbidity Function
latitude is the virtual place’s latitude in degrees. julian-day is an integer from 0 to
366, the day of the year. hour is a real number from 0 to 24 for the time of day; 12 is
noon. turbidity is the degree of cloudiness described in See Section 4.9.7 [Daylight],
page 113.

scene:overcast returns an overcast sky as it might look at hour on julian-day at
latitude. If strength is positive, included is an ambient light source of strength (default

1).

Viewpoints are objects in the virtual world, and can be transformed individually or with
solid objects.

Chapter 4: Mathematical Packages 96

scene:viewpoint name distance compass pitch Function

scene:viewpoint name distance compass Function
Returns a viewpoint named name facing the origin and placed distance from it. com-
pass is a number from 0 to 360 giving the compass heading. pitch is a number from
-90 to 90, defaulting to 0, specifying the angle from the horizontal.

scene:viewpoints proximity Function
Returns 6 viewpoints, one at the center of each face of a cube with sides 2 * proximity,
centered on the origin.

Light Sources

In VRMLY7, lights shine only on objects within the same children node and descendants
of that node. Although it would have been convenient to let light direction be rotated by
solid:rotation, this restricts a rotated light’s visibility to objects rotated with it.

To workaround this limitation, these directional light source procedures accept either Carte-
sian or spherical coordinates for direction. A spherical coordinate is a list (theta azimuth);
where theta is the angle in degrees from the zenith, and azimuth is the angle in degrees due
west of south.

It is sometimes useful for light sources to be brighter than ‘1’. When intensity arguments
are greater than 1, these functions gang multiple sources to reach the desired strength.

light:ambient color intensity Function
light:ambient color Function
Ambient light shines on all surfaces with which it is grouped.

color is a an object of type Section 4.9.1 [Color Data-Type|, page 99, a 24-bit SRGB
integer, or a list of 3 numbers between 0.0 and 1.0. If color is #f, then the default
color will be used. intensity is a real non-negative number defaulting to ‘1’.

light:ambient returns a light source or sources of color with total strength of inten-
sity (or 1 if omitted).

light:directional color direction intensity Function
light:directional color direction Function
light:directional color Function

Directional light shines parallel rays with uniform intensity on all objects with which
it is grouped.

color is a an object of type Section 4.9.1 [Color Data-Type|, page 99, a 24-bit sRGB
integer, or a list of 3 numbers between 0.0 and 1.0. If color is #f, then the default
color will be used.

direction must be a list or vector of 2 or 3 numbers specifying the direction to this
light. If direction has 2 numbers, then these numbers are the angle from zenith and
the azimuth in degrees; if direction has 3 numbers, then these are taken as a Cartesian
vector specifying the direction to the light source. The default direction is upwards;
thus its light will shine down.

Chapter 4: Mathematical Packages 97

intensity is a real non-negative number defaulting to ‘1’.

light:directional returns a light source or sources of color with total strength of
intensity, shining from direction.

light:beam attenuation radius aperture peak Function
light:beam attenuation radius aperture Function
light:beam attenuation radius Function
light:beam attenuation Function

attenuation is a list or vector of three nonnegative real numbers specifying the re-
duction of intensity, the reduction of intensity with distance, and the reduction of
intensity as the square of distance. radius is the distance beyond which the light does
not shine. radius defaults to ‘100’.

aperture is a real number between 0 and 180, the angle centered on the light’s axis
through which it sheds some light. peak is a real number between 0 and 90, the angle
of greatest illumination.

light:point location color intensity beam Function
light:point location color intensity Function
light:point location color Function
light:point Ilocation Function

Point light radiates from location, intensity decreasing with distance, towards all
objects with which it is grouped.

color is a an object of type Section 4.9.1 [Color Data-Type|, page 99, a 24-bit sRGB
integer, or a list of 3 numbers between 0.0 and 1.0. If color is #f, then the default
color will be used. intensity is a real non-negative number defaulting to ‘1’. beam is
a structure returned by light:beam or #f.

light:point returns a light source or sources at location of color with total strength
intensity and beam properties. Note that the pointlight itself is not visible. To make
it so, place an object with emissive appearance at location.

light:spot location direction color intensity beam Function
light:spot Iocation direction color intensity Function
light:spot location direction color Function
light:spot location direction Function
light:spot Iocation Function

Spot light radiates from location towards direction, intensity decreasing with distance,
illuminating objects with which it is grouped.

direction must be a list or vector of 2 or 3 numbers specifying the direction to this
light. If direction has 2 numbers, then these numbers are the angle from zenith and
the azimuth in degrees; if direction has 3 numbers, then these are taken as a Cartesian
vector specifying the direction to the light source. The default direction is upwards;
thus its light will shine down.

color is a an object of type Section 4.9.1 [Color Data-Type|, page 99, a 24-bit sRGB
integer, or a list of 3 numbers between 0.0 and 1.0. If color is #f, then the default
color will be used.

Chapter 4: Mathematical Packages 98

intensity is a real non-negative number defaulting to ‘1’.

light:spot returns a light source or sources at location of direction with total
strength color. Note that the spotlight itself is not visible. To make it so, place
an object with emissive appearance at location.

Object Primitives

solid:box geometry appearance Function

solid:box geometry Function
geometry must be a number or a list or vector of three numbers. If geometry is a
number, the solid:box returns a cube with sides of length geometry centered on the
origin. Otherwise, solid:box returns a rectangular box with dimensions geometry
centered on the origin. appearance determines the surface properties of the returned

object.
solid:cylinder radius height appearance Function
solid:cylinder radius height Function

Returns a right cylinder with dimensions radius and (abs height) centered on the
origin. If height is positive, then the cylinder ends will be capped. appearance
determines the surface properties of the returned object.

solid:disk radius thickness appearance Function

solid:disk radius thickness Function
thickness must be a positive real number. solid:disk returns a circular disk with
dimensions radius and thickness centered on the origin. appearance determines the
surface properties of the returned object.

solid:cone radius height appearance Function

solid:cone radius height Function
Returns an isosceles cone with dimensions radius and height centered on the origin.
appearance determines the surface properties of the returned object.

solid:pyramid side height appearance Function

solid:pyramid side height Function
Returns an isosceles pyramid with dimensions side and height centered on the origin.
appearance determines the surface properties of the returned object.

solid:sphere radius appearance Function

solid:sphere radius Function
Returns a sphere of radius radius centered on the origin. appearance determines the
surface properties of the returned object.

solid:ellipsoid geometry appearance Function
solid:ellipsoid geometry Function
geometry must be a number or a list or vector of three numbers. If geometry is
a number, the solid:ellipsoid returns a sphere of diameter geometry centered on

Chapter 4: Mathematical Packages 99

the origin. Otherwise, solid:ellipsoid returns an ellipsoid with diameters geometry
centered on the origin. appearance determines the surface properties of the returned
object.

Surface Attributes

solid:color diffuseColor ambientIntensity specularColor shininess Function
emissiveColor transparency

solid:color diffuseColor ambientIntensity specularColor shininess Function
emissiveColor

solid:color diffuseColor ambientIntensity specularColor shininess Function

solid:color diffuseColor ambientIntensity specularColor Function

solid:color diffuseColor ambientIntensity Function

solid:color diffuseColor Function

Returns an appearance, the optical properties of the objects with which it is associ-
ated. ambientIntensity, shininess, and transparency must be numbers between 0 and
1. diffuseColor, specularColor, and emissiveColor are objects of type Section 4.9.1
(Color Data-Type|, page 99, 24-bit sRGB integers or lists of 3 numbers between 0.0
and 1.0. If a color argument is omitted or #f, then the default color will be used.

solid:texture image color scale rotation center translation Function
solid:texture image color scale rotation center Function
solid:texture image color scale rotation Function
solid:texture image color scale Function
solid:texture image color Function
solid:texture image Function

Returns an appearance, the optical properties of the objects with which it is associ-
ated. Image is a string naming a JPEG or PNG image resource. color is #f, a color,
or the string returned by solid:color. The rest of the optional arguments specify
2-dimensional transforms applying to the image.

scale must be #f, a number, or list or vector of 2 numbers specifying the scale to apply
to image. rotation must be #f or the number of degrees to rotate image. center must
be #f or a list or vector of 2 numbers specifying the center of image relative to the
image dimensions. translation must be #f or a list or vector of 2 numbers specifying
the translation to apply to image.

Aggregating Objects

solid:center-row-of number solid spacing Function
Returns a row of number solid objects spaced evenly spacing apart.

solid:center-array-of number-a number-b solid spacing-a spacing-b Function
Returns number-b rows, spacing-b apart, of number-a solid objects spacing-a apart.

Chapter 4: Mathematical Packages 100

solid:center-pile-of number-a number-b number-c solid spacing-a Function
spacing-b spacing-c
Returns number-c planes, spacing-c apart, of number-b rows, spacing-b apart, of
number-a solid objects spacing-a apart.

solid:arrow center Function
center must be a list or vector of three numbers. Returns an upward pointing metallic
arrow centered at center.

solid:arrow Function
Returns an upward pointing metallic arrow centered at the origin.

Spatial Transformations

solid:translation center solid . . . Function
center must be a list or vector of three numbers. solid:translation Returns an
aggregate of solids, ... with their origin moved to center.

solid:scale scale solid . . . Function
scale must be a number or a list or vector of three numbers. solid:scale Returns
an aggregate of solids, ... scaled per scale.

solid:rotation axis angle solid . . . Function
axis must be a list or vector of three numbers. solid:rotation Returns an aggregate
of solids, ... rotated angle degrees around the axis axis.

4.9 Color

http://swissnet.ai.mit.edu/~ jaffer/Color

The goals of this package are to provide methods to specify, compute, and transform colors
in a core set of additive color spaces. The color spaces supported should be sufficient for
working with the color data encountered in practice and the literature.

4.9.1 Color Data-Type

(require ’color)

color? obj Function
Returns #t if obj is a color.
color? obj typ Function
Returns #t if obj is a color of color-space typ. The symbol typ must be one of:
e CIEXYZ

e RGB709

Chapter 4: Mathematical Packages 101

o L*a*bh*
o L*u*v*
e sRGB

e c¢-sRGB
e L*C*h

make-color space arg . .. Function
Returns a color of type space.

color-space color Function
Returns the symbol for the color-space in which color is embedded.

color-precision color Function
For colors in digital color-spaces, color-precision returns the number of bits used
for each of the R, G, and B channels of the encoding. Otherwise, color-precision
returns #f

color-white-point color Function
Returns the white-point of color in all color-spaces except CIEXYZ.

convert-color color space white-point Function
convert-color color space Function
convert-color color e-sRGB precision Function

Converts color into space at optional white-point.

4.9.1.1 External Representation

Each color encoding has an external, case-insensitive representation. To ensure portability,
the white-point for all color strings is D65.!

Color Space External Representation
CIEXYZ CIEXYZ:<X>/<Y>/<Z>
RGBT709 RGBi:<R>/<G>/
L*a*b* CIELAB:<L>/<a>/
L*u*v* CIELuv:<L>/<u>/<v>
L*C*h CIELCh:<L>/<C>/<h>

The X, Y, Z, L, a, b, u, v, C, h, R, G, and B fields are (Scheme) real numbers within the
appropriate ranges.

! Readers may recognize these color string formats from Xlib. X11’s color management
system was doomed by its fiction that CRT monitors’ (and X11 default) color-spaces
were linear RGBi. Unable to shed this legacy, the only practical way to view pictures
on X is to ignore its color management system and use an sRGB monitor. In this
implementation the device-independent RGB709 and sRGB spaces replace the device-
dependent RGBi and RGB spaces of Xlib.

Chapter 4: Mathematical Packages 102

Color Space External Representation
sRGB sRGB:<R>/<G>/
e-sRGB10 e-sRGB10:<R>/<G>/
e-sRGB12 e-sRGB12:<R>/<G>/
e-sRGB16 e-sRGB16:<R>/<G>/

The R, G, and B, fields are non-negative exact decimal integers within the appropriate
ranges.

Several additional syntaxes are supported by string->color:

Color Space External Representation
sRGB sRGB:<RRGGBB>
sRGB #<RRGGBB>

sRGB 0x<RRGGBB>

sRGB #x<RRGGBB>

Where RRGGBB is a non-negative six-digit hexadecimal number.

color->string color Function
Returns a string representation of color.

string->color string Function
Returns the color represented by string. If string is not a syntactically valid notation
for a color, then string->color returns #f.

4.9.1.2 White

We experience color relative to the illumination around us. CIEXYZ coordinates, although
subject to uniform scaling, are objective. Thus other color spaces are specified relative to
a white point in CIEXYZ coordinates.

The white point for digital color spaces is set to D65. For the other spaces a white-point
argument can be specified. The default if none is specified is the white-point with which
the color was created or last converted; and D65 if none has been specified.

D65 Constant
Is the color of 6500.K (blackbody) illumination. D65 is close to the average color of
daylight.

D50 Constant

Is the color of 5000.K (blackbody) illumination. D50 is the color of indoor lighting
by incandescent bulbs, whose filaments have temperatures around 5000.K.

4.9.2 Color Spaces

Chapter 4: Mathematical Packages 103

Measurement-based Color Spaces

The tristimulus color spaces are those whose component values are proportional measure-
ments of light intensity. The CIEXYZ(1931) system provides 3 sets of spectra to convolve
with a spectrum of interest. The result of those convolutions is coordinates in CIEXYZ
space. All tristimuls color spaces are related to CIEXYZ by linear transforms, namely ma-
trix multiplication. Of the color spaces listed here, CIEXYZ and RGB709 are tristimulus
spaces.

CIEXYZ Color Space
The CIEXYZ color space covers the full gamut. It is the basis for color-space conver-
sions.

CIEXYZ is a list of three inexact numbers between 0 and 1.1. ’(0. 0. 0.) is black;
(1. 1. 1.) is white.

ciexyz->color xyz Function
xyz must be a list of 3 numbers. If xyz is valid CIEXYZ coordinates, then ciexyz-
>color returns the color specified by xyz; otherwise returns #f.

color:ciexyz xy z Function
Returns the CIEXYZ color composed of x, y, z. If the coordinates do not encode a
valid CIEXYZ color, then an error is signaled.

color->ciexyz color Function
Returns the list of 3 numbers encoding color in CIEXYZ.

RGB709 Color Space
BT.709-4 (03/00) Parameter values for the HDTV standards for production and inter-
national programme exchange specifies parameter values for chromaticity, sampling,
signal format, frame rates, etc., of high definition television signals.

An RGB709 color is represented by a list of three inexact numbers between 0 and 1.
(0. 0. 0.) is black (1. 1. 1.) is white.

rgb709->color rgb Function
rgb must be a list of 3 numbers. If rgb is valid RGB709 coordinates, then rgb709-
>color returns the color specified by rgb; otherwise returns #f.

color:rgb709 r g b Function
Returns the RGB709 color composed of r, g, b. If the coordinates do not encode a
valid RGB709 color, then an error is signaled.

color->rgb709 color Function
Returns the list of 3 numbers encoding color in RGB709.

Chapter 4: Mathematical Packages 104

Perceptual Uniformity

Although properly encoding the chromaticity, tristimulus spaces do not match the logarith-
mic response of human visual systems to intensity. Minimum detectable differences between
colors correspond to a smaller range of distances (6:1) in the L*a*b* and L*u*v* spaces
than in tristimulus spaces (80:1). For this reason, color distances are computed in L*a*b*
(or L*C*h).

L*a*b* Color Space
Is a CIE color space which better matches the human visual system’s perception of
color. It is a list of three numbers:

e 0 <= L* <= 100 (CIE Lightness)
e 500 <= a* <= 500
e -200 <= b* <= 200

1*a*b*->color L*a*b* white-point Function
L*a*b* must be a list of 3 numbers. If L*a*b* is valid L*a*b* coordinates, then
1*xa*xb*->color returns the color specified by L*a*b*; otherwise returns #f.

color:1*a*b* L* a* b* white-point Function
Returns the L*a*b* color composed of L*, a*, b* with white-point.
color:1*a*b* L* a* b* Function

Returns the L*a*b* color composed of L*, a*, b*. If the coordinates do not encode
a valid L*a*b* color, then an error is signaled.

color->1*a*b* color white-point Function
Returns the list of 3 numbers encoding color in L*a*b* with white-point.

color->1*a*b* color Function
Returns the list of 3 numbers encoding color in L*a*b*.

L*u*v* Color Space
Is another CIE encoding designed to better match the human visual system’s percep-
tion of color.

I*u*v*->color L*u*v* white-point Function
L*u*v* must be a list of 3 numbers. If L*u*v* is valid L*u®v* coordinates, then
1*u*xv*->color returns the color specified by L*u*v*; otherwise returns #f.

color:1*u*v* L* u* v* white-point Function
Returns the L*u*v* color composed of L*, u* v* with white-point.

color:1*u*v* L* u* v* Function
Returns the L*u*v* color composed of L* u* v* If the coordinates do not encode
a valid L*u*v* color, then an error is signaled.

Chapter 4: Mathematical Packages 105

color->1*u*v* color white-point Function
Returns the list of 3 numbers encoding color in L*u*v* with white-point.

color->1*u*v* color Function

Returns the list of 3 numbers encoding color in L*u*v*.

Cylindrical Coordinates

HSL (Hue Saturation Lightness), HSV (Hue Saturation Value), HSI (Hue Saturation Inten-
sity) and HCI (Hue Chroma Intensity) are cylindrical color spaces (with angle hue). But
these spaces are all defined in terms device-dependent RGB spaces.

One might wonder if there is some fundamental reason why intuitive specification of color
must be device-dependent. But take heart! A cylindrical system can be based on L*a*b*
and is used for predicting how close colors seem to observers.

L*C*h Color Space

Expresses the *a and b* of L*a*b* in polar coordinates. It is a list of three numbers:
e 0 <= L* <= 100 (CIE Lightness)
e C* (CIE Chroma) is the distance from the neutral (gray) axis.
e 0 <= h <= 360 (CIE Hue) is the angle.

The colors by quadrant of h are:

0 red, orange, yellow 90

90 yellow, yellow-green, green 180

180 green, cyan (blue-green), blue 270

270 blue, purple, magenta 360
I*c*h->color L*C*h white-point Function

L*C*h must be a list of 3 numbers. If L*C*h is valid L*C*h coordinates, then 1*cxh-
>color returns the color specified by L*C*h; otherwise returns #.

color:1*c*h L* C* h white-point Function
Returns the L*C*h color composed of L*, C* h with white-point.
color:1*c*h L* C* h Function

Returns the L*C*h color composed of L* C*, h. If the coordinates do not encode a
valid L*C*h color, then an error is signaled.

color->1*c*h color white-point Function
Returns the list of 3 numbers encoding color in L*C*h with white-point.

color->1*c*h color Function
Returns the list of 3 numbers encoding color in L*C*h.

Chapter 4: Mathematical Packages 106

Digital Color Spaces

The color spaces discussed so far are impractical for image data because of numerical preci-
sion and computational requirements. In 1998 the IEC adopted A Standard Default Color
Space for the Internet - SRGB (http://www.w3.org/Graphics/Color/sRGB). SRGB was
cleverly designed to employ the 24-bit (256x256x256) color encoding already in widespread
use; and the 2.2 gamma intrinsic to CRT monitors.

Conversion from CIEXYZ to digital (sRGB) color spaces is accomplished by conversion first
to a RGB709 tristimulus space with D65 white-point; then each coordinate is individually
subjected to the same non-linear mapping. Inverse operations in the reverse order create
the inverse transform.

sRGB Color Space
Is "A Standard Default Color Space for the Internet". Most display monitors will
work fairly well with sRGB directly. Systems using ICC profiles ? should work very
well with sSRGB.

srgb->color rgb Function
rgb must be a list of 3 numbers. If rgb is valid sSRGB coordinates, then srgb->color
returns the color specified by rgb; otherwise returns #f.

color:srgb rgb Function
Returns the sRGB color composed of r, g, b. If the coordinates do not encode a valid
sRGB color, then an error is signaled.

xRGB Color Space
Represents the equivalent sSRGB color with a single 24-bit integer. The most sig-

nificant 8 bits encode red, the middle 8 bits blue, and the least significant 8 bits
green.

color->srgb color Function
Returns the list of 3 integers encoding color in sRGB.

color->xrgb color Function
Returns the 24-bit integer encoding color in sRGB.

xrgb->color k Function
Returns the sRGB color composed of the 24-bit integer k.

2 A comprehensive encoding of transforms between CIEXYZ and device color spaces is

the International Color Consortium profile format, ICC.1:1998-09:

The intent of this format is to provide a cross-platform device profile format.
Such device profiles can be used to translate color data created on one device
into another device’s native color space.

http://www.w3.org/Graphics/Color/sRGB

Chapter 4: Mathematical Packages 107

e-sRGB Color Space
Is "Photography - Electronic still picture imaging - Extended sRGB color encoding"
(PIMA 7667:2001). It extends the gamut of sSRGB; and its higher precision numbers
provide a larger dynamic range.

A triplet of integers represent e-sRGB colors. Three precisions are supported:
e-sRGB10 0 to 1023

e-sRGB12 0 to 4095

e-sRGB16 0 to 65535

e-srgb->color precision rgb Function
precision must be the integer 10, 12, or 16. rgb must be a list of 3 numbers. If rgb
is valid e-sRGB coordinates, then e-srgb->color returns the color specified by rgb;
otherwise returns #f.

color:e-srgb 10rghb Function
Returns the e-sRGB10 color composed of integers r, g, b.

color:e-srgb 12rgh Function
Returns the e-sRGB12 color composed of integers r, g, b.

color:e-srgb 16rghb Function
Returns the e-sRGB16 color composed of integers r, g, b. If the coordinates do not
encode a valid e-sRGB color, then an error is signaled.

color->e-srgb precision color Function
precision must be the integer 10, 12, or 16. color->e-srgb returns the list of 3
integers encoding color in sSRGB10, sRGB12, or sRGB16.

4.9.3 Spectra

The following functions compute colors from spectra, scale color luminance, and extract
chromaticity. XYZ is used in the names of procedures for unnormalized colors; the co-
ordinates of CIEXYZ colors are constrained as described in Section 4.9.2 [Color Spaces,
page 101.

(require ’color-space)
A spectrum may be represented as:

e A procedure of one argument accepting real numbers from 380e-9 to 780e-9, the wave-
length in meters; or

e A vector of real numbers representing intensity samples evenly spaced over some range
of wavelengths overlapping the range 380e-9 to 780e-9.

CIEXYZ values are calculated as dot-product with the X, Y (Luminance), and Z Spectral
Tristimulus Values. The files ‘cie1931.xyz’ and ‘cie1964.xyz’ in the distribution contain
these CIE-defined values.

Chapter 4: Mathematical Packages 108

ciel1964 Feature
Loads the Spectral Tristimulus Values defining CIE 1964 Supplementary Stan-
dard Colorimetric Observer. cie1931
Loads the Spectral Tristimulus Values defining CIE 1931 Supplementary Stan-
dard Colorimetric Observer. ciexyz
Requires Spectral Tristimulus Values, defaulting to cie1931.

(require ’ciel964) or (require ’ciel1931) will load specific values used by the following
spectrum conversion procedures. The spectrum conversion procedures (require ’ciexyz)
to assure that a set is loaded.

spectrum->XYZ proc Function
proc must be a function of one argument. spectrum->XYZ computes the CIEXYZ(1931)
values for the spectrum returned by proc when called with arguments from 380e-9 to
780e-9, the wavelength in meters.

spectrum->XYZ spectrum x1 x2 Function

x1 and x2 must be positive real numbers specifying the wavelengths (in meters) cor-
responding to the zeroth and last elements of vector or list spectrum. spectrum->XYZ
returns the CIEXYZ(1931) values for a light source with spectral values proportional
to the elements of spectrum at evenly spaced wavelengths between x1 and x2.
Compute the colors of 6500.K and 5000.K blackbody radiation:

(require ’color-space)

(define xyz (spectrum->XYZ (blackbody-spectrum 6500)))

(define y_n (cadr xyz))

(map (lambda (x) (/ x y_n)) xyz)
= (0.9687111145512467 1.0 1.1210875945303613)

(define xyz (spectrum->XYZ (blackbody-spectrum 5000)))
(map (lambda (x) (/ x y_n)) xyz)
= (0.2933441826889158 0.2988931825387761 0.25783646831201573)

spectrum->CIEXYZ spectrum x1 x2 Function

spectrum->CIEXYZ proc Function
spectrum->CIEXYZ computes the CIEXYZ(1931) values for the spectrum, scaled to
be just inside the RGB709 gamut.

wavelength->XYZ w Function
w must be a number between 380e-9 to 780e-9. wavelength->XYZ returns (unnor-
malized) XYZ values for a monochromatic light source with wavelength w.

blackbody-spectrum temp Function

blackbody-spectrum temp span Function
Returns a procedure of one argument (wavelength in meters), which returns the ra-
diance of a black body at temp.

The optional argument span is the wavelength analog of bandwidth. With the default
span of 1.nm (1le-9.m), the values returned by the procedure correspond to the power
of the photons with wavelengths w to w+1e-9.

Chapter 4: Mathematical Packages 109

temperature->XYZ x Function
The positive number x is a temperature in degrees kelvin. temperature->XYZ com-
putes the CIEXYZ(1931) values for the spectrum of a black body at temperature
X.

Compute the chromaticities of 6500.K and 5000.K blackbody radiation:

(require ’color-space)
(XYZ->chromaticity (temperature->XYZ 6500))
= (0.3135191660557008 0.3236456786200268)

(XYZ->chromaticity (temperature->XYZ 5000))
= (0.34508082841161052 0.3516084965163377)

temperature->CIEXYZ x Function
The positive number x is a temperature in degrees kelvin. temperature->CIEXYZ
computes the CIEXYZ(1931) values for the spectrum of a black body at temperature
x, scaled to be just inside the RGB709 gamut.

XYZ:normalize xyz Function
xyz is a list of three non-negative real numbers. XYZ:normalize returns a list of
numbers proportional to xyz; scaled so their sum is 1.

XY Z:normalize-colors colors . . . Function
colors is a list of XYZ triples. XYZ:normalize-colors scales the triples in the list so
the maximum sum of numbers in a triple is 1.

XY Z->chromaticity xyz Function
Returns a two element list: the x and y components of xyz normalized to 1 (= x + y
+ 7).

chromaticity->CIEXYZ x y Function

Returns the largest CIEXYZ(1931) values having chromaticity x and y which are
within the RGB709 gamut.

Many color datasets are expressed in xyY format; chromaticity with CIE luminance (Y).
But xyY is not a CIE standard like CIEXYZ, CIELAB, and CIELUV. Although chromi-
nance is well defined, the luminance component is sometimes scaled to 1, sometimes to 100,
but usually has no obvious range. With no given whitepoint, the only reasonable course is
to ascertain the luminance range of a dataset and normalize the values to lie from 0 to 1.

XYZ->xyY xyz Function
Returns a three element list: the x and y components of XYZ normalized to 1, and
CIE luminance Y.

xyY->XYZ xyY Function

Chapter 4: Mathematical Packages 110

xy Y :normalize-colors colors Function
colors is a list of xyY triples. xyY:normalize-colors scales each chromaticity so it
sums to 1 or less; and divides the Y values by the maximum Y in the dataset, so all
lie between 0 and 1.

xy Y :normalize-colors colors n Function
If n is positive real, then xyY:normalize-colors divides the Y values by n times the
maximum Y in the dataset.

If n is an exact non-positive integer, then xyY:normalize-colors divides the Y values
by the maximum of the Ys in the dataset excepting the -n largest Y values.

In all cases, returned Y values are limited to lie from 0 to 1.

Why would one want to normalize to other than 17 If the sun or its reflection is the
brightest object in a scene, then normalizing to its luminance will tend to make the rest
of the scene very dark. As with photographs, limiting the specular highlights looks better
than darkening everything else.

The results of measurements being what they are, xyY:normalize-colors is extremely

tolerant. Negative numbers are replaced with zero, and chromaticities with sums greater
than one are scaled to sum to one.

4.9.4 Color Difference Metrics

CIE:DE* colorl color2 white-point Function
CIE:DE* colorl color2 Function
Returns the Euclidean distance in L*a*b* space between colorl and color?.

CIE:DE*94 colorl color2 parametric-factors Function

CIE:DE*94 colorl color2 Function
CIE:DE*94 measures distance in the L*C*h cylindrical color-space. The three axes
are individually scaled (depending on C*) in their contributions to the total distance.

The CIE has defined reference conditions under which the metric with default param-
eters can be expected to perform well. These are:
e The specimens are homogeneous in colour.
e The colour difference (CIELAB) is <= 5 units.
e They are placed in direct edge contact.
e Each specimen subtends an angle of >4 degrees to the assessor, whose colour
vision is normal.

e They are illuminated at 1000 lux, and viewed against a background of uniform
grey, with L* of 50, under illumination simulating D65.

The parametric-factors argument is a list of 3 quantities kL, kC and kH. parametric-
factors independently adjust each colour-difference term to account for any devia-
tions from the reference viewing conditions. Under the reference conditions explained
above, the default is kL. = kC = kH = 1.

Chapter 4: Mathematical Packages 111

The Color Measurement Committee of The Society of Dyers and Colorists in Great Britain
created a more sophisticated color-distance function for use in judging the consistency of
dye lots. With CMC:DE* it is possible to use a single value pass/fail tolerance for all shades.

CMC:DE* colorl color2 1 c Function

CMC:DE* colorl color2 Function
CMC:DE* is also a L*C*h metric. The parametric-factors argument is a list of 2
numbers | and ¢. I and ¢ parameterize this metric. 1 and 1 are recommended for
perceptibility; the default, 2 and 1, for acceptability.

4.9.5 Color Conversions

This package contains the low-level color conversion and color metric routines operating on
lists of 3 numbers. There is no type or range checking.

(require ’color-space)

CIEXYZ:D65 Constant
Is the color of 6500.K (blackbody) illumination. D65 is close to the average color of
daylight.

CIEXYZ:D50 Constant

Is the color of 5000.K (blackbody) illumination. D50 is the color of indoor lighting
by incandescent bulbs.

CIEXYZ->RGB709 xyz Function
RGB709->CIEXYZ srgb Function
CIEXYZ->L*u*v* xyz white-point Function
CIEXYZ->L*u*v* xyz Function
L*u*v*->CIEXYZ L*u*v* white-point Function
L*u*v*->CIEXYZ L*u*v* Function

The white-point defaults to CIEXYZ:D65.

CIEXYZ->L*a*b* xyz white-point Function
CIEXYZ->L*a*b* xyz Function
L*a*b*->CIEXYZ L*a*b* white-point Function
L*a*b*->CIEXYZ L*a*b* Function

The XYZ white-point defaults to CIEXYZ:D65.

L*a*b*->L*C*h L*a*p* Function
L*C*h->L*a*b* L*C*h Function
CIEXYZ->sRGB xyz Function

sRGB->CIEXYZ srgb Function

Chapter 4: Mathematical Packages 112

CIEXYZ->e-sRGB n xyz Function
e-sRGB->CIEXYZ n srgb Function
sRGB->e-sRGB n srgb Function
e-sRGB->sRGB n srgb Function

The integer n must be 10, 12, or 16. Because sRGB and e-sRGB use the same RGB709
chromaticities, conversion between them is simpler than conversion through CIEXYZ.

Do not convert e-sRGB precision through e-sRGB->sRGB then sRGB->e-sRGB — values would
be truncated to 8-bits!

e-sRGB->e-sRGB nl srgb n2 Function
The integers nl and n2 must be 10, 12, or 16. e-sRGB->e-sRGB converts srgb to
e-sRGB of precision n2.

L*a*b*:DE Ilabl lab2 Function
Returns the Euclidean distance between labl and lab2.

L*C*h:DE*94 Ichl Ich2 parametric-factors Function
L*C*h:DE*94 Ichl Ich2 Function
L*Cxh :DE*94 measures distance in the L*C*h cylindrical color-space between Ichl and
Ich2. The three axes are individually scaled (depending on C*) in their contributions
to the total distance.

CMC-DE Ichl Ich2 parametric-factors Function
CMC-DE Ichl Ich2 1 ¢ Function
CMC-DE Ichl Ich2] Function
CMC-DE Ichl Ich2 Function

CMC:DE is a L*C*h metric. The parametric-factors argument is a list of 2 numbers I
and c. I and ¢ parameterize this metric. 1 and 1 are recommended for perceptibility;
the default, 2 and 1, for acceptability.

4.9.6 Color Names

(require ’color-names)

Rather than ballast the color dictionaries with numbered grays, file->color-dictionary
discards them. They are provided through the grey procedure:

grey k Function
Returns (inexact->exact (round (* k 2.55))), the X11 color grey<k>.

A color dictionary is a database table relating canonical color-names to color-strings (see
Section 4.9.1 [Color Data-Type], page 99).

The column names in a color dictionary are unimportant; the first field is the key, and the
second is the color-string.

Chapter 4: Mathematical Packages 113

color-name:canonicalize name Function
Returns a downcased copy of the string or symbol name with ‘_’, ‘=’, and whitespace
removed.

color-name->color name tablel table2 . .. Function
tablel, table2, ... must be color-dictionary tables. color-name->color searches for
the canonical form of name in tablel, table2, ... in order; returning the color-string

of the first matching record; #f otherwise.

color-dictionaries->lookup tablel table2 . .. Function
tablel, table2, ... must be color-dictionary tables. color-dictionaries->lookup
returns a procedure which searches for the canonical form of its string argument in
tablel, table2, ...; returning the color-string of the first matching record; and #f
otherwise.

color-dictionary name rdb base-table-type Function

rdb must be a string naming a relational database file; and the symbol name a table
therein. The database will be opened as base-table-type. color-dictionary returns
the read-only table name in database name if it exists; #f otherwise.

color-dictionary name rdb Function
rdb must be an open relational database or a string naming a relational database file;
and the symbol name a table therein. color-dictionary returns the read-only table
name in database name if it exists; #f otherwise.

load-color-dictionary name rdb base-table-type Function

load-color-dictionary name rdb Function
rdb must be a string naming a relational database file; and the symbol name a table
therein. If the symbol base-table-type is provided, the database will be opened as
base-table-type. load-color-dictionary creates a top-level definition of the symbol
name to a lookup procedure for the color dictionary name in rdb.

The value returned by load-color-dictionary is unspecified.

Dictionary Creation

file->color-dictionary file table-name rdb base-table-type Function

file->color-dictionary file table-name rdb Function
rdb must be an open relational database or a string naming a relational database
file, table-name a symbol, and the string file must name an existing file with color-
names and their corresponding xRGB (6-digit hex) values. file->color-dictionary
creates a table table-name in rdb and enters the associations found in file into it.

url->color-dictionary url table-name rdb base-table-type Function

url->color-dictionary url table-name rdb Function
rdb must be an open relational database or a string naming a relational database file
and table-name a symbol. url->color-dictionary retrieves the resource named by

Chapter 4: Mathematical Packages 114

the string url using the wget program; then calls file->color-dictionary to enter
its associations in table-name in url.

This section has detailed the procedures for creating and loading color dictionaries. So
where are the dictionaries to load?

http://swissnet.ai.mit.edu/~jaffer/Color/Dictionaries.html

Describes and evaluates several color-name dictionaries on the web. The following procedure
creates a database containing two of these dictionaries.

make-slib-color-name-db Function
Creates an alist-table relational database in library-vicinity containing the Resene
and Hollasch color-name dictionaries.

If the files ‘resenecolours.txt’ and ‘hollasch.txt’ exist in the library-vicinity, then
they used as the source of color-name data. Otherwise, make-slib-color-name-db
calls url->color-dictionary with the URLSs of appropriate source files.

The Short List

(require ’hollasch)

hollasch name Function
Looks for name among the 190 entries in the Hollasch color-name dictionary (
http://swissnet.ai.mit.edu/~ jaffer/Color/hollasch.pdf). If name is found,
the corresponding color is returned. Otherwise #f is returned. Hollasch is well suited
for light source colors.

Resene Paints Limited, New Zealand’s largest privately-owned and operated paint manu-
facturing company, has generously made their Resene RGB Values List available.

(require ’resene)

resene name Function
Looks for name among the 1300 entries in the Resene color-name dictionary (
http://swissnet.ai.mit.edu/~ jaffer/Color/resene.pdf). If name is found, the
corresponding color is returned. Otherwise #f is returned. The Resene RGB Values
List is an excellent source for surface colors.

4.9.7 Daylight

(require ’daylight)

This package calculates the colors of sky as detailed in: http://www.cs.utah.edu/vissim/papers/sunsky.
A Practical Analytic Model for Daylight A. J. Preetham, Peter Shirley, Brian Smits

solar-hour julian-day hour Function
Returns the solar-time in hours given the integer julian-day in the range 1 to 366,
and the local time in hours.

http://swissnet.ai.mit.edu/~jaffer/Color/hollasch.pdf
http://swissnet.ai.mit.edu/~jaffer/Color/hollasch.pdf
http://swissnet.ai.mit.edu/~jaffer/Color/resene.pdf
http://swissnet.ai.mit.edu/~jaffer/Color/resene.pdf

Chapter 4: Mathematical Packages 115

To be meticulous, subtract 4 minutes for each degree of longitude west of the standard
meridian of your time zone.

solar-declination julian-day Function

solar-polar declination latitude solar-hour Function
Returns a list of theta_s, the solar angle from the zenith, and phi_s, the solar azimuth.
0 <= theta_s measured in degrees. phi_s is measured in degrees from due south; west
of south being positive.

In the following procedures, the number 0 <= theta_s <= 90 is the solar angle from the
zenith in degrees.

Turbidity is a measure of the fraction of scattering due to haze as opposed to molecules.
This is a convenient quantity because it can be estimated based on visibility of distant
objects. This model fails for turbidity values less than 1.3.

512]- I
| * pure-air
256 | —:%x I
| : ** exceptionally-clear
128]-: * |
(I ok |
64|-: *
| : ** very-clear
32|-: *ok |
| ok I
16]-: *x*x clear
| ook koK
8|-: Kok ok ok |
| : *xkk light-haze |
4|-: *okok ok |
| *okokok ok ok |
2|-: *kkkkkkk haze thin-|
| stk ok ok ok ok ok ok ok ok ok fog |
=t ook kokkkk—— |
O S S S-S SN SE S
1 2 4 8 16 32 64
Meterorological range (km) versus Turbidity
sunlight-spectrum turbidity theta_s Function

Returns a vector of 41 values, the spectrum of sunlight from 380.nm to 790.nm for a
given turbidity and theta_s.

sunlight-xyz turbidity theta_s Function
Returns (unnormalized) XYZ values for color of sunlight for a given turbidity and
theta_s.

Chapter 4: Mathematical Packages 116

sunlight-ciexyz turbidity theta_s Function
Given turbidity and theta_s, sunlight-ciexyz returns the CIEXYZ triple for color
of sunlight scaled to be just inside the RGB709 gamut.

zenith-xyy turbidity theta_s Function
Returns the xyY (chromaticity and luminance) at the zenith. The Luminance has
units ked/m"2.

overcast-sky-color-xyy turbidity theta_s Function
turbidity is a positive real number expressing the amount of light scattering. The
real number theta_s is the solar angle from the zenith in degrees.

overcast-sky-color-xyy returns a function of one angle theta, the angle from the
zenith of the viewing direction (in degrees); and returning the xyY value for light
coming from that elevation of the sky.

clear-sky-color-xyy turbidity theta_s phi_s Function

sky-color-xyy turbidity theta_s phi_s Function
turbidity is a positive real number expressing the amount of light scattering. The
real number theta_s is the solar angle from the zenith in degrees. The real number
phi_s is the solar angle from south.

clear-sky-color-xyy returns a function of two angles, theta and phi which specify
the angles from the zenith and south meridian of the viewing direction (in degrees);
returning the xyY value for light coming from that direction of the sky.

sky-color-xyY calls overcast-sky-color-xyY for turbidity <= 20; otherwise the
clear-sky-color-xyy function.

4.10 Root Finding

(require ’root)

newtown:find-integer-root f df/dx x0 Function
Given integer valued procedure f, its derivative (with respect to its argument) df/dx,
and initial integer value x0 for which df/dx(x0) is non-zero, returns an integer x for
which f(x) is closer to zero than either of the integers adjacent to x; or returns #f if
such an integer can’t be found.

To find the closest integer to a given integers square root:

(define (integer-sqrt y)
(newton:find-integer-root
(lambda (x) (- (*x x x) y))
(lambda (x) (* 2 x))
(ash 1 (quotient (integer-length y) 2))))

(integer-sqrt 15) = 4

Chapter 4: Mathematical Packages 117

integer-sqrt y Function
Given a non-negative integer y, returns the rounded square-root of y.

newton:find-root f df/dx x0 prec Function
Given real valued procedures f, df/dx of one (real) argument, initial real value x0
for which df/dx(x0) is non-zero, and positive real number prec, returns a real x for
which abs(f(x)) is less than prec; or returns #£ if such a real can’t be found.

If prec is instead a negative integer, newton:find-root returns the result of -prec
iterations.

H. J. Orchard, The Laguerre Method for Finding the Zeros of Polynomials, IEEE Transac-
tions on Circuits and Systems, Vol. 36, No. 11, November 1989, pp 1377-1381.

There are 2 errors in Orchard’s Table II. Line k=2 for starting value of 1000+j0
should have Z_k of 1.0475 + j4.1036 and line k=2 for starting value of 0+j1000
should have Z_k of 1.0988 + j4.0833.

laguerre:find-root f df/dz ddf/dz"2 z0 prec Function
Given complex valued procedure f of one (complex) argument, its derivative (with re-
spect to its argument) df/dx, its second derivative ddf/dz"2, initial complex value z0,
and positive real number prec, returns a complex number z for which magnitude(f(z))
is less than prec; or returns #f if such a number can’t be found.

If prec is instead a negative integer, laguerre:find-root returns the result of -prec
iterations.

laguerre:find-polynomial-root deg f df/dz ddf/dz~2 z0 prec Function
Given polynomial procedure f of integer degree deg of one argument, its derivative
(with respect to its argument) df/dx, its second derivative ddf/dz"2, initial com-
plex value z0, and positive real number prec, returns a complex number z for which
magnitude(f(z)) is less than prec; or returns #f if such a number can’t be found.

If prec is instead a negative integer, laguerre:find-polynomial-root returns the
result of -prec iterations.

secant:find-root f x0 xI prec Function
secant:find-bracketed-root f x0 x1 prec Function
Given a real valued procedure f and two real valued starting points x0 and x1, returns
a real x for which (abs (f x)) is less than prec; or returns #£ if such a real can’t be
found.

If x0 and x1 are chosen such that they bracket a root, that is

(or (< (f x0) 0 (f x1))
(< (f x1) 0 (£ x0)))

then the root returned will be between x0 and x1, and f will not be passed an
argument outside of that interval.

secant:find-bracketed-root will return #f unless x0 and x1 bracket a root.

Chapter 4: Mathematical Packages

118

The secant method is used until a bracketing interval is found, at which point a

modified regula falsi method is used.

If prec is instead a negative integer, secant:find-root returns the result of -prec

iterations.

If prec is a procedure it should accept 5 arguments: x0 f0 x1 fI and count, where f0
will be (f x0), f1 (f x1), and count the number of iterations performed so far. prec

should return non-false if the iteration should be stopped.

4.11 Minimizing

(require ’minimize)

The Golden Section Search?® algorithm finds minima of functions which are expensive
to compute or for which derivatives are not available. Although optimum for the general

case, convergence is slow, requiring nearly 100 iterations for the example (x~3-2x-5).

If the derivative is available, Newton-Raphson is probably a better choice.
function is inexpensive to compute, consider approximating the derivative.

golden-section-search f x0 x1 prec

If the

Function

x_0 are x_1 real numbers. The (single argument) procedure f is unimodal over the
open interval (x_0, x_1). That is, there is exactly one point in the interval for which
the derivative of f is zero.

golden-section-search returns a pair (x . f(x)) where f(x) is the minimum. The
prec parameter is the stop criterion. If prec is a positive number, then the iteration
continues until x is within prec from the true value. If prec is a negative integer, then
the procedure will iterate -prec times or until convergence. If prec is a procedure of
seven arguments, x0, x1, a, b, fa, fb, and count, then the iterations will stop when
the procedure returns #t.

Analytically, the minimum of x~3-2x-5 is 0.816497.

(define func (lambda (x) (+ (x x (+ (*x x x) -2)) -5)))
(golden-section-search func 0 1 (/ 10000))

==> (816.4883855245578e-3 . -6.0886621077391165)
(golden-section-search func 0 1 -5)

==> (819.6601125010515e-3 . -6.088637561916407)
(golden-section-search func 0 1

(lambda (a bcdef g) (=g 500)))
==> (816.4965933140557e-3 . -6.088662107903635)

4.12 Commutative Rings

3 David Kahaner, Cleve Moler, and Stephen Nash Numerical Methods and Software

Prentice-Hall, 1989, ISBN 0-13-627258-4

Chapter 4: Mathematical Packages 119

Scheme provides a consistent and capable set of numeric functions. Inexacts implement
a field; integers a commutative ring (and Euclidean domain). This package allows one to use
basic Scheme numeric functions with symbols and non-numeric elements of commutative
rings.

(require ’commutative-ring)

The commutative-ring package makes the procedures +, -, *, /, and ~ careful in the
sense that any non-numeric arguments they do not reduce appear in the expression output.
In order to see what working with this package is like, self-set all the single letter identifiers
(to their corresponding symbols).

(define a ’a)
(define z ’z)

Or just (require ’self-set). Now try some sample expressions:

(+ (+ab) (-ab) = (xa?2)

(x (+ab) (+ab) = (C (+ab) 2)

(x (+ab) (-ab) = (x (+ab) (-ab)
(x (-ab) (-ab) = C (-ab) 2)

(x (-ab) (+ab) = (x (+ ab) (-ahb))
(/ (+ab) (+cd)) = (/ (+ab) (+ cd)
(" (+ab)3) = (C (+ab) 3

(" (+a2)3) = (C (+2a)3)

Associative rules have been applied and repeated addition and multiplication converted
to multiplication and exponentiation.

We can enable distributive rules, thus expanding to sum of products form:

(set! *ruleset* (combined-rulesets distribute* distribute/))

(x (+ab) (+ab) =+ *x2ab) (a2 (b2

(x (+ab) (-ab) = (- (Ca2) (b2)

(*x (-ab) (-ab) = - Ca2) Cb2) (x2ahb)

(x (-ab) (+ab)) = (- Ca2) CCb2)

(/ (+ab) (+cd)) =+ (L aFcd) (/b (+cd))

(/ +ab) (-cd)) =+ (L aC-cd) (/b (-cd)

(/ (ab) (cd)) = - Ual(-cd)) (/b (-cdd)

(/ (ab) (+cd)) = - Ua+cd)) (/b H+cd)

C(+ab)3 =+ xx3a(Cb2) x3b (Ca2)Ca3 (b3
(" (+a2)3) = (+8((xal2) (x (a2 6) (Ca3id))

Use of this package is not restricted to simple arithmetic expressions:

(require ’determinant)

(determinant ’((a b c) (de f) (gh i))) =
(- (+ (xaei) xbfg) (xcdh) (xafh (xbdi) (*xceg)

Chapter 4: Mathematical Packages 120

Currently, only +, =, *, /, and ~ support non-numeric elements. Expressions with - are
converted to equivalent expressions without -, so behavior for - is not defined separately.
/ expressions are handled similarly.

This list might be extended to include quotient, modulo, remainder, lcm, and gcd;
but these work only for the more restrictive Euclidean (Unique Factorization) Domain.

4.13 Rules and Rulesets

The commutative-ring package allows control of ring properties through the use of
rulesets.

*ruleset™ Variable
Contains the set of rules currently in effect. Rules defined by cring:define-rule
are stored within the value of *ruleset*™ at the time cring:define-rule is called. If
*ruleset™ is #£, then no rules apply.

make-ruleset rulel ... Function
make-ruleset name rulel . .. Function
Returns a new ruleset containing the rules formed by applying cring:define-rule
to each 4-element list argument rule. If the first argument to make-ruleset is a
symbol, then the database table created for the new ruleset will be named name.
Calling make-ruleset with no rule arguments creates an empty ruleset.

combined-rulesets rulesetl ... Function
combined-rulesets name rulesetl . .. Function
Returns a new ruleset containing the rules contained in each ruleset argument ruleset.
If the first argument to combined-ruleset is a symbol, then the database table
created for the new ruleset will be named name. Calling combined-ruleset with no
ruleset arguments creates an empty ruleset.

Two rulesets are defined by this package.

distribute* Constant
Contain the ruleset to distribute multiplication over addition and subtrac-
tion. distribute/ Cons
Contain the ruleset to distribute division over addition and subtraction.

Take care when using both distribute* and distribute/ simultaneously. It is possible
to put / into an infinite loop.

You can specify how sum and product expressions containing non-numeric elements
simplify by specifying the rules for + or * for cases where expressions involving objects
reduce to numbers or to expressions involving different non-numeric elements.

cring:define-rule op sub-opl sub-op2 reduction Function
Defines a rule for the case when the operation represented by symbol op is applied
to lists whose cars are sub-opl and sub-op2, respectively. The argument reduction

Chapter 4: Mathematical Packages 121

is a procedure accepting 2 arguments which will be lists whose cars are sub-opl and
sub-op2.

cring:define-rule op sub-opl ’identity reduction Function
Defines a rule for the case when the operation represented by symbol op is applied to
a list whose car is sub-opl, and some other argument. Reduction will be called with
the list whose car is sub-opl and some other argument.

If reduction returns #£f, the reduction has failed and other reductions will be tried.
If reduction returns a non-false value, that value will replace the two arguments in
arithmetic (+, -, and *) calculations involving non-numeric elements.

The operations + and * are assumed commutative; hence both orders of arguments
to reduction will be tried if necessary.

The following rule is the definition for distributing * over +.

(cring:define-rule
’*% ’+ ’identity
(lambda (expl exp2)
(apply + (map (lambda (trm) (* trm exp2)) (cdr expl))))))

4.14 How to Create a Commutative Ring

The first step in creating your commutative ring is to write procedures to create ele-
ments of the ring. A non-numeric element of the ring must be represented as a list whose
first element is a symbol or string. This first element identifies the type of the object. A
convenient and clear convention is to make the type-identifying element be the same symbol
whose top-level value is the procedure to create it.

(define (n . list1)
(cond ((and (= 2 (length listl))
(eq? (car listl) (cadr listl)))
0)
((not (term< (first listl) (lastl listl)))
(apply n (reverse listl)))
(else (coms ’n list1))))

(define (s x y) (m x y))

(define (m . listl)
(cond ((neq? (first 1listl) (term_min listl))
(apply m (cyclicrotate listl)))
((term< (lastl 1listl) (cadr 1listl))
(apply m (reverse (cyclicrotate list1))))
(else (cons ’m 1list1))))

Define a procedure to multiply 2 non-numeric elements of the ring. Other multipli-
catons are handled automatically. Objects for which rules have not been defined are not
changed.

(define (n*n ni nj)
(let ((1istl (cdr ni)) (list2 (cdr nj)))

Chapter 4: Mathematical Packages 122

(cond ((null? (intersection listl 1ist2)) #f)
((and (eq? (lastl listl) (first list2))
(neq? (first 1listl) (lastl 1ist2)))
(apply n (splice listl 1list2)))
((and (eq? (first listl) (first list2))
(neq? (lastl listl) (lastl list2)))
(apply n (splice (reverse listl) list2)))
((and (eq? (lastl listl) (lastl list2))
(neq? (first listl) (first list2)))
(apply n (splice listl (reverse list2))))
((and (eq? (lastl listl) (first list2))
(eq? (first listl) (lastl 1ist2)))
(apply m (cyclicsplice listl 1ist2)))
((and (eq? (first listl) (first list2))
(eq? (lastl listl) (lastl 1ist2)))
(apply m (cyclicsplice (reverse listl) list2)))
(else #£))))

Test the procedures to see if they work.

;;; where cyclicrotate(list) is cyclic rotation of the list one step
;55 by putting the first element at the end
(define (cyclicrotate listl)
(append (rest listl) (list (first 1list1))))
;;; and where term_min(list) is the element of the list which is
;55 first in the term ordering.
(define (term_min listl)
(car (sort listl term<)))
(define (term< syml sym2)
(string<? (symbol->string syml) (symbol->string sym2)))
(define first car)
(define rest cdr)
(define (lastl listl) (car (last-pair list1)))
(define (neq? objl obj2) (not (eq? objl obj2)))
;;; where splice is the concatenation of listl and list2 except that their
;53 common element is not repeated.
(define (splice listl list2)
(cond ((eq? (lastl 1listl) (first 1list2))
(append listl (cdr 1ist2)))
(else (error ’splice listl 1list2))))
;55 where cyclicsplice is the result of leaving off the last element of
;3 splice(listl,list2).
(define (cyclicsplice listl 1list2)
(cond ((and (eq? (lastl listl) (first list2))
(eq? (first listl) (lastl 1ist2)))
(butlast (splice listl list2) 1))
(else (error ’cyclicsplice listl 1ist2))))

(NN (S ab) (Sab) = (mab)

Then register the rule for multiplying type N objects by type N objects.

Chapter 4: Mathematical Packages

(cring:define-rule ’* ’N ’N NxN))
Now we are ready to compute!
(define (%)
(define detM
(+ (x (S ghb
+ (x (8 £ d)
(- (x (8 af) (S
(x (8 £ £)
(- x (Sag (S
(x (8 f g
(- (x (8ad (S
(x (S gd
(+ (x (S £ b)
(- x (Sag (S
(x (8 f £)
(- (x (8 ab) (S
(x (8 f g
(- (x (8 af) (s
(x (8 g)
(+ (x (S £ b)
(- (x (8ad (S
(*x (8 fd
(- x (Sag (S
(x (S £ g
(- (x (S ab) (S
x S gg
+ (x (8 f b)
(- (x (S af) (S
(x (S £ d)
(- (x (8ab) (8
(x (8 £ £)
(- (x (8 ad (s
(* (Sbe) (Sca (Sec)
detM
))
(pretty-print (t))
_|
(- (+ (macebdf g
(macebdg 1)
macebfdg
(macebfgd
(macebgdf)
(macebgtfd)
*2 (mabec) (mdfg)
(x macebd mf g
(x macebf) (md g
(* macebg) (md £)))

g))
d))
£))

£))
g))
b))

g))
b))
d))

d))
£))
b))

(*

(*

(*
(*
(*

(*
(*
(%

(*
(*
(%

(s
(s

(s

(s
(s

(s

(s
(s

(s

(s
(s

(s

g)
d)

£)

)

g)

b)

g)
b)

d

d)
f)

b)

(s
(s

(s

(s
(s

(s

(s
(s

(s

(s
(s

(s

£3)))
g))))
d))))))

g))))
b))))
£3)))))

d))))
g))))
b))))))

£3)))
b))))
d)>))))))

123

Chapter 4: Mathematical Packages 124

4.15 Matrix Algebra

(require ’determinant)

A Matrix can be either a list of lists (rows) or an array. As with linear-algebra texts, this
package uses 1-based coordinates.

matrix->lists matrix Function
Returns the list-of-lists form of matrix.

matrix->array matrix Function
Returns the (ones-based) array form of matrix.

determinant matrix Function
matrix must be a square matrix. determinant returns the determinant of matrix.

(require ’determinant)
(determinant ’((1 2) (3 4))) = -2
(determinant ’((1 2 3) (4 56) (7 89))) = 0

transpose matrix Function
Returns a copy of matrix flipped over the diagonal containing the 1,1 element.

matrix:product ml m2 Function
Returns the product of matrices m1 and m2.

matrix:inverse matrix Function
matrix must be a square matrix. If matrix is singlar, then matrix:inverse returns
#f; otherwise matrix:inverse returns the matrix:product inverse of matrix.

Chapter 5: Database Packages 125

5 Database Packages

5.1 Base Table

A base-table is the primitive database layer upon which SLIB relational databases are
built. At the minimum, it must support the types integer, symbol, string, and boolean.
The base-table may restrict the size of integers, symbols, and strings it supports.

A base table implementation is available as the value of the identifier naming it (eg.
alist-table) after requiring the symbol of that name.

alist-table Feature
(require ’alist-table)

Association-list base tables support all Scheme types and are suitable for small
databases. In order to be retrieved after being written to a file, the data stored
should include only objects which are readable and writeable in the Scheme imple-
mentation.

The alist-table base-table-type is included in the SLIB distribution.

wb-table Feature
(require ’wb-table)

WB is a B-tree database package supported by the SCM Scheme implementation. It
supports scheme expressions for keys and values whose text representations are less
than 255 characters in length. Being disk-based, wb-table readily stores hundreds of
megabytes of data.

This rest of this section documents the interface for a base table implementation from
which the Section 5.2 [Relational Databasel, page 128 package constructs a Relational sys-
tem. It will be of interest primarily to those wishing to port or write new base-table
implementations.

*base-table-implementations® Variable
To support automatic dispatch for open-database, each base-table module adds an
association to *base-table-implementations®* when loaded. This association is the
list of the base-table symbol and the value returned by (make-relational-system
base-table) .

All of these functions are accessed through a single procedure by calling that procedure
with the symbol name of the operation. A procedure will be returned if that operation is
supported and #f otherwise. For example:

Chapter 5: Database Packages 126

(require ’alist-table)

(define open-base (alist-table ’make-base))
make-base = *a procedurex*

(define foo (alist-table ’foo))

foo = #f

make-base filename key-dimension column-types Function
Returns a new, open, low-level database (collection of tables) associated with filename.
This returned database has an empty table associated with catalog-id. The positive
integer key-dimension is the number of keys composed to make a primary-key for the
catalog table. The list of symbols column-types describes the types of each column
for that table. If the database cannot be created as specified, #f is returned.

Calling the close-base method on this database and possibly other operations will
cause filename to be written to. If filename is #f a temporary, non-disk based database
will be created if such can be supported by the base table implelentation.

open-base filename mutable Function
Returns an open low-level database associated with filename. If mutable is #t, this
database will have methods capable of effecting change to the database. If mutable is
#f, only methods for inquiring the database will be available. If the database cannot
be opened as specified #£ is returned.

Calling the close-base (and possibly other) method on a mutable database will
cause filename to be written to.

write-base lldb filename Function
Causes the low-level database 1ldb to be written to filename. If the write is success-
ful, also causes lldb to henceforth be associated with filename. Calling the close-
database (and possibly other) method on Illdb may cause filename to be written
to. If filename is #f this database will be changed to a temporary, non-disk based
database if such can be supported by the underlying base table implelentation. If the
operations completed successfully, #t is returned. Otherwise, #£ is returned.

sync-base Ildb Function
Causes the file associated with the low-level database 1ldb to be updated to reflect its
current state. If the associated filename is #f, no action is taken and #f is returned.
If this operation completes successfully, #t is returned. Otherwise, #£f is returned.

close-base Ildb Function
Causes the low-level database Ildb to be written to its associated file (if any). If the
write is successful, subsequent operations to lldb will signal an error. If the operations
complete successfully, #t is returned. Otherwise, #f is returned.

make-table Ildb key-dimension column-types Function
Returns the base-id for a new base table, otherwise returns #f. The base table can
then be opened using (open-table lldb base-id). The positive integer key-dimension
is the number of keys composed to make a primary-key for this table. The list of
symbols column-types describes the types of each column.

Chapter 5: Database Packages 127

catalog-id Constant
A constant base-id suitable for passing as a parameter to open-table. catalog-id will
be used as the base table for the system catalog.

open-table lidb base-id key-dimension column-types Function
Returns a handle for an existing base table in the low-level database 1ldb if that table
exists and can be opened in the mode indicated by mutable, otherwise returns #f£.

As with make-table, the positive integer key-dimension is the number of keys com-
posed to make a primary-key for this table. The list of symbols column-types de-
scribes the types of each column.

kill-table Ildb base-id key-dimension column-types Function
Returns #t if the base table associated with base-id was removed from the low level
database Ildb, and #f otherwise.

make-keyifier-1 type Function
Returns a procedure which accepts a single argument which must be of type type.
This returned procedure returns an object suitable for being a key argument in the
functions whose descriptions follow.

Any 2 arguments of the supported type passed to the returned function which are
not equal? must result in returned values which are not equal?.

make-list-keyifier key-dimension types Function
The list of symbols types must have at least key-dimension elements. Returns a proce-
dure which accepts a list of length key-dimension and whose types must corresopond
to the types named by types. This returned procedure combines the elements of its
list argument into an object suitable for being a key argument in the functions whose
descriptions follow.

Any 2 lists of supported types (which must at least include symbols and non-negative
integers) passed to the returned function which are not equal? must result in returned
values which are not equal?.

make-key-extractor key-dimension types column-number Function
Returns a procedure which accepts objects produced by application of the result of
(make-list-keyifier key-dimension types). This procedure returns a key which
is equal? to the column-numberth element of the list which was passed to create
combined-key. The list types must have at least key-dimension elements.

make-key->list key-dimension types Function
Returns a procedure which accepts objects produced by application of the result of
(make-list-keyifier key-dimension types). This procedure returns a list of keys
which are elementwise equal? to the list which was passed to create combined-key.

In the following functions, the key argument can always be assumed to be the value returned
by a call to a keyify routine.

Chapter 5: Database Packages 128

In contrast, a match-keys argument is a list of length equal to the number of primary keys.
The match-keys restrict the actions of the table command to those records whose primary
keys all satisfy the corresponding element of the match-keys list. The elements and their
actions are:

#£f The false value matches any key in the corresponding position.

an object of type procedure
This procedure must take a single argument, the key in the cor-
responding position. Any key for which the procedure returns a
non-false value is a match; Any key for which the procedure re-
turns a #f is not.

other values
Any other value matches only those keys equal? to it.

The key-dimension and column-types arguments are needed to decode the combined-keys
for matching with match-keys.

for-each-key handle procedure key-dimension column-types match-keys Function
Calls procedure once with each key in the table opened in handle which satisfy match-
keys in an unspecified order. An unspecified value is returned.

map-key handle procedure key-dimension column-types match-keys Function
Returns a list of the values returned by calling procedure once with each key in the
table opened in handle which satisfy match-keys in an unspecified order.

ordered-for-each-key handle procedure key-dimension column-types Function
match-keys
Calls procedure once with each key in the table opened in handle which satisfy match-
keys in the natural order for the types of the primary key fields of that table. An
unspecified value is returned.

delete* handle key-dimension column-types match-keys Function
Removes all rows which satisfy match-keys from the table opened in handle. An
unspecified value is returned.

present? handle key Function
Returns a non-#f value if there is a row associated with key in the table opened in
handle and #f otherwise.

delete handle key Function
Removes the row associated with key from the table opened in handle. An unspecified
value is returned.

make-getter key-dimension types Function
Returns a procedure which takes arguments handle and key. This procedure returns
a list of the non-primary values of the relation (in the base table opened in handle)
whose primary key is key if it exists, and #f otherwise.

Chapter 5: Database Packages 129

make-putter key-dimension types Function
Returns a procedure which takes arguments handle and key and value-list. This
procedure associates the primary key key with the values in value-list (in the base
table opened in handle) and returns an unspecified value.

supported-type? symbol Function
Returns #t if symbol names a type allowed as a column value by the implementa-
tion, and #f otherwise. At a minimum, an implementation must support the types
integer, symbol, string, boolean, and base-id.

supported-key-type? symbol Function
Returns #t if symbol names a type allowed as a key value by the implementation, and
#f otherwise. At a minimum, an implementation must support the types integer,
and symbol.

integer Scheme exact integer.
symbol Scheme symbol.
boolean #t or #f.

base-id Objects suitable for passing as the base-id parameter to open-table. The value
of catalog-id must be an acceptable base-id.

5.2 Relational Database

(require ’relational-database)

This package implements a database system inspired by the Relational Model (E. F.
Codd, A Relational Model of Data for Large Shared Data Banks). An SLIB relational

database implementation can be created from any Section 5.1 [Base Table|, page 124 im-
plementation.

Why relational database? For motivations and design issues see http://swissnet.ai.mit.edu/~ jaff

5.2.1 Using Databases

(require ’databases)
This enhancement wraps a utility layer on relational-database which provides:
e Identification of open databases by filename.
e Automatic sharing of open (immutable) databases.
e Automatic loading of base-table package when creating a database.

e Detection and automatic loading of the appropriate base-table package when opening
a database.

e Table and data definition from Scheme lists.

Chapter 5: Database Packages 130

Database Sharing

Auto-sharing refers to a call to the procedure open-database returning an already open
database (procedure), rather than opening the database file a second time.

Note: Databases returned by open-database do not include wrappers applied
by packages like Section 5.2.7 [Embedded Commands|, page 139. But wrapped
databases do work as arguments to these functions.

When a database is created, it is mutable by the creator and not auto-sharable. A database
opened mutably is also not auto-sharable. But any number of readers can (open) share a
non-mutable database file.

This next set of procedures mirror the whole-database methods in Section 5.2.4 [Database
Operations|, page 133. Except for create-database, each procedure will accept either a
filename or database procedure for its first argument.

create-database filename base-table-type Function
Returns an open relational database (with base-table type base-table-type) associated
with filename.

Only alist-table and base-table modules which have been loaded will dispatch correctly
from the open-database procedures. Therefore, either pass two arguments to open-
database, or require the base-table your database file uses before calling open-database
with one argument.

open-database! rdb base-table-type Function
Returns mutable open relational database or #f.

open-database rdb base-table-type Function
Returns an open relational database associated with rdb. The database will be opened
with base-table type base-table-type).

open-database rdb Function
Returns an open relational database associated with rdb. open-database will at-
tempt to deduce the correct base-table-type.

write-database rdb filename Function
Writes the mutable relational-database rdb to filename.

sync-database rdb Function
Writes the mutable relational-database rdb to the filename it was opened with.

solidify-database rdb Function
Syncs rdb and makes it immutable.

close-database rdb Function
rdb will only be closed when the count of open-database - close-database calls for
rdb (and its filename) is 0.

Chapter 5: Database Packages 131

mdbm:report Function
Prints a table of open database files. The columns are the base-table type, number
of opens, ‘!’ for mutable, and the filename.

(mdbm: report)

_|
alist-table 003 /usr/local/lib/slib/clrnamdb.scm
alist-table 001 ! sdram.db

Defining Tables

define-tables rdb spec-0 . .. Function
Adds tables as specified in spec-0 ... to the open relational-database rdb. Each spec
has the form:

(<name> <descriptor-name> <descriptor-name> <rows>)
or
(<name> <primary-key-fields> <other-fields> <rows>)

where <name> is the table name, <descriptor-name> is the symbol name of a descriptor
table, <primary-key-fields> and <other-fields> describe the primary keys and other
fields respectively, and <rows> is a list of data rows to be added to the table.

<primary-key-fields> and <other-fields> are lists of field descriptors of the form:
(<column-name> <domain>)

or
(<column-name> <domain> <column-integrity-rule>)

where <column-name> is the column name, <domain> is the domain of the column,
and <column-integrity-rule> is an expression whose value is a procedure of one argu-
ment (which returns #f to signal an error).

If <domain> is not a defined domain name and it matches the name of this table or
an already defined (in one of spec-0 . ..) single key field table, a foriegn-key domain
will be created for it.

Listing Tables

list-table-definition rdb table-name Function
If symbol table-name exists in the open relational-database rdb, then returns a list of
the table-name, its primary key names and domains, its other key names and domains,
and the table’s records (as lists). Otherwise, returns #f.

The list returned by list-table-definition, when passed as an argument to
define-tables, will recreate the table.

5.2.2 Relational Database Objects

Chapter 5: Database Packages 132

make-relational-system base-table-implementation Function
Returns a procedure implementing a relational database using the base-table-
implementation.

All of the operations of a base table implementation are accessed through a procedure
defined by requireing that implementation. Similarly, all of the operations of the
relational database implementation are accessed through the procedure returned by
make-relational-system. For instance, a new relational database could be created
from the procedure returned by make-relational-system by:

(require ’alist-table)
(define relational-alist-system
(make-relational-system alist-table))
(define create-alist-database
(relational-alist-system ’create-database))
(define my-database
(create-alist-database "mydata.db"))

What follows are the descriptions of the methods available from relational system returned
by a call to make-relational-system.

create-database filename Function

Returns an open, nearly empty relational database associated with filename. The
only tables defined are the system catalog and domain table. Calling the close-
database method on this database and possibly other operations will cause filename
to be written to. If filename is #f a temporary, non-disk based database will be
created if such can be supported by the underlying base table implelentation. If the
database cannot be created as specified #f is returned. For the fields and layout of
descriptor tables, Section 5.2.6 [Catalog Representation], page 138

open-database filename mutable? Function
Returns an open relational database associated with filename. If mutable? is #t, this
database will have methods capable of effecting change to the database. If mutable?
is #f, only methods for inquiring the database will be available. Calling the close-
database (and possibly other) method on a mutable? database will cause filename
to be written to. If the database cannot be opened as specified #£ is returned.

5.2.3 Database Operations

These are the descriptions of the methods available from an open relational database. A
method is retrieved from a database by calling the database with the symbol name of the
operation. For example:

(define my-database
(create-alist-database "mydata.db"))
(define telephone-table-desc
((my-database ’create-table) ’telephone-table-desc))

Chapter 5: Database Packages 133

close-database Function
Causes the relational database to be written to its associated file (if any). If the
write is successful, subsequent operations to this database will signal an error. If the
operations completed successfully, #t is returned. Otherwise, #£ is returned.

write-database filename Function
Causes the relational database to be written to filename. If the write is successful, also
causes the database to henceforth be associated with filename. Calling the close-
database (and possibly other) method on this database will cause filename to be
written to. If filename is #f this database will be changed to a temporary, non-disk
based database if such can be supported by the underlying base table implelentation.
If the operations completed successfully, #t is returned. Otherwise, #f is returned.

sync-database Function
Causes any pending updates to the database file to be written out. If the operations
completed successfully, #t is returned. Otherwise, #£ is returned.

solidify-database Function
Causes any pending updates to the database file to be written out. If the writes
completed successfully, then the database is changed to be immutable and #t is
returned. Otherwise, #f is returned.

table-exists? table-name Function
Returns #t if table-name exists in the system catalog, otherwise returns #f£.

open-table table-name mutable? Function
Returns a methods procedure for an existing relational table in this database if it
exists and can be opened in the mode indicated by mutable?, otherwise returns #£.

These methods will be present only in mutable databases.

delete-table table-name Function
Removes and returns the table-name row from the system catalog if the table or view
associated with table-name gets removed from the database, and #f otherwise.

create-table table-desc-name Function
Returns a methods procedure for a new (open) relational table for describing the
columns of a new base table in this database, otherwise returns #f. For the fields and
layout of descriptor tables, See Section 5.2.6 [Catalog Representation|, page 138.

create-table table-name table-desc-name Function
Returns a methods procedure for a new (open) relational table with columns as de-
scribed by table-desc-name, otherwise returns #f.

Chapter 5: Database Packages 134

create-view 77 Function
project-table 77 Function
restrict-table 77 Function
cart-prod-tables 77 Function

Not yet implemented.

5.2.4 Table Operations

These are the descriptions of the methods available from an open relational table. A method
is retrieved from a table by calling the table with the symbol name of the operation. For
example:

(define telephone-table-desc
((my-database ’create-table) ’telephone-table-desc))
(require ’common-list-functions)
(define ndrp (telephone-table-desc ’row:insert))
(ndrp ’(1 #t name #f string))
(ndrp ’(2 #f telephone
(lambda (d)
(and (string? d) (> (string-length d) 2)
(every
(lambda (c)
(memv c > (#\0 #\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9
#\+ #\C #\ #\) #\-)))
(string->list d))))
string))

Some operations described below require primary key arguments. Primary keys arguments
are denoted keyl key2 It is an error to call an operation for a table which takes
primary key arguments with the wrong number of primary keys for that table.

The term row used below refers to a Scheme list of values (one for each column) in the order
specified in the descriptor (table) for this table. Missing values appear as #f. Primary keys
must not be missing.

get column-name Function
Returns a procedure of arguments keyl key2 ... which returns the value for the
column-name column of the row associated with primary keys keyl, key2 ... if that

row exists in the table, or #f otherwise.

((plat ’get ’processor) ’djgpp) = 1386
((plat ’get ’processor) ’be-os) = #f

get* column-name Function
Returns a procedure of optional arguments match-keyl ... which returns a list of
the values for the specified column for all rows in this table. The optional match-keyl
. arguments restrict actions to a subset of the table. See the match-key description
below for details.

((plat ’get* ’processor)) =
(1386 8086 1386 8086 1386 1386 8086 m68000

Chapter 5: Database Packages 135

m68000 m68000 m68000 m68000 powerpc)

((plat ’get* ’processor) #f) =
(1386 8086 1386 8086 1386 1386 8086 m68000
m68000 m68000 m68000 m68000 powerpc)

(define (a-key? key)
(char=7 #\a (string-ref (symbol->string key) 0)))

((plat ’get* ’processor) a-key?) =
(m68000 m68000 m68000 m68000 m68000 powerpc)

((plat ’get* ’name) a-key?) =
(atari-st-turbo-c atari-st-gcc amiga-sas/c-5.10
amiga-aztec amiga-dice-c aix)

row:retrieve Function
Returns a procedure of arguments keyl key2 ... which returns the row associated
with primary keys keyl, key2 ... if it exists, or #f otherwise.

((plat ’row:retrieve) ’linux) = (linux i386 linux gcc)
((plat ’row:retrieve) ’multics) = #f

row:retrieve® Function
Returns a procedure of optional arguments match-keyl ... which returns a list of
all rows in this table. The optional match-keyl ... arguments restrict actions to a

subset of the table. See the match-key description below for details.

((plat ’row:retrievex*) a-key?) =
((atari-st-turbo-c m68000 atari turbo-c)
(atari-st-gcc m68000 atari gcc)
(amiga-sas/c-5.10 m68000 amiga sas/c)
(amiga-aztec m68000 amiga aztec)
(amiga-dice-c m68000 amiga dice-c)

(aix powerpc aix -))

row:remove Function
Returns a procedure of arguments keyl key2 ... which removes and returns the row
associated with primary keys keyl, key2 ... if it exists, or #f otherwise.
row:remove* Function
Returns a procedure of optional arguments match-key1 . .. which removes and returns
a list of all rows in this table. The optional match-key1 . .. arguments restrict actions

to a subset of the table. See the match-key description below for details.

row:delete Function
Returns a procedure of arguments keyl key2 ... which deletes the row associated
with primary keys keyl, key2 ... if it exists. The value returned is unspecified.

Chapter 5: Database Packages 136

row:delete* Function
Returns a procedure of optional arguments match-keyl ... which Deletes all rows
from this table. The optional match-keyl ... arguments restrict deletions to a subset

of the table. See the match-key description below for details. The value returned is
unspecified. The descriptor table and catalog entry for this table are not affected.

row:update Function
Returns a procedure of one argument, row, which adds the row, row, to this table. If
a row for the primary key(s) specified by row already exists in this table, it will be
overwritten. The value returned is unspecified.

row:update* Function
Returns a procedure of one argument, rows, which adds each row in the list of rows,
rows, to this table. If a row for the primary key specified by an element of rows
already exists in this table, it will be overwritten. The value returned is unspecified.

row:insert Function
Adds the row row to this table. If a row for the primary key(s) specified by row
already exists in this table an error is signaled. The value returned is unspecified.

row:insert* Function
Returns a procedure of one argument, rows, which adds each row in the list of rows,
rows, to this table. If a row for the primary key specified by an element of rows
already exists in this table, an error is signaled. The value returned is unspecified.

for-each-row Function
Returns a procedure of arguments proc match-keyl ... which calls proc with each
row in this table in the (implementation-dependent) natural ordering for rows. The
optional match-keyl ... arguments restrict actions to a subset of the table. See the
match-key description below for details.

Real relational programmers would use some least-upper-bound join for every row to
get them in order; But we don’t have joins yet.

The (optional) match-keyl ... arguments are used to restrict actions of a whole-table
operation to a subset of that table. Those procedures (returned by methods) which accept
match-key arguments will accept any number of match-key arguments between zero and
the number of primary keys in the table. Any unspecified match-key arguments default to
#t.

The match-keyl ... restrict the actions of the table command to those records whose
primary keys each satisfy the corresponding match-key argument. The arguments and
their actions are:

#f The false value matches any key in the corresponding position.

an object of type procedure
This procedure must take a single argument, the key in the cor-
responding position. Any key for which the procedure returns a
non-false value is a match; Any key for which the procedure re-
turns a #f is not.

Chapter 5: Database Packages 137

other values
Any other value matches only those keys equal? to it.

close-table Function
Subsequent operations to this table will signal an error.

column-names Constant
column-foreigns Constant
column-domains Constant
column-types Constant

Return a list of the column names, foreign-key table names, domain names, or type
names respectively for this table. These 4 methods are different from the others in
that the list is returned, rather than a procedure to obtain the list.

primary-limit Constant
Returns the number of primary keys fields in the relations in this table.

5.2.5 Catalog Representation

Each database (in an implementation) has a system catalog which describes all the user
accessible tables in that database (including itself).

The system catalog base table has the following fields. PRI indicates a primary key for that
table.

PRI table-name

column-limit the highest column number
coltab-name descriptor table name

bastab-id data base table identifier
user-integrity-rule

view-procedure A scheme thunk which, when called,

produces a handle for the view. coltab
and bastab are specified if and only if
view-procedure is not.

Descriptors for base tables (not views) are tables (pointed to by system catalog). Descriptor
(base) tables have the fields:

PRI column-number sequential integers from 1
primary-key? boolean TRUE for primary key components
column-name
column-integrity-rule
domain-name

A primary key is any column marked as primary-key? in the corresponding descriptor
table. All the primary-key? columns must have lower column numbers than any non-
primary-key? columns. Every table must have at least one primary key. Primary keys
must be sufficient to distinguish all rows from each other in the table. All of the system
defined tables have a single primary key.

Chapter 5: Database Packages 138

This package currently supports tables having from 1 to 4 primary keys if there are non-
primary columns, and any (natural) number if all columns are primary keys. If you need
more than 4 primary keys, I would like to hear what you are doing!

A domain is a category describing the allowable values to occur in a column. It is described
by a (base) table with the fields:

PRI domain-name
foreign-table
domain-integrity-rule
type-id
type-param
The type-id field value is a symbol. This symbol may be used by the underlying base table
implementation in storing that field.

If the foreign-table field is non-#f then that field names a table from the catalog. The
values for that domain must match a primary key of the table referenced by the type-param
(or #£, if allowed). This package currently does not support composite foreign-keys.

The types for which support is planned are:

atom

symbol

string [<length>]
number [<base>]
money <currency>
date-time

boolean

foreign-key <table-name>
expression

virtual <expression>

5.2.6 Embedded Commands

(require ’database-commands)
This enhancement wraps a utility layer on relational-database which provides:
e Automatic execution of initialization commands stored in database.

e Transparent execution of database commands stored in *commands* table in database.

When an enhanced relational-database is called with a symbol which matches a name
in the *commands* table, the associated procedure expression is evaluated and applied to
the enhanced relational-database. A procedure should then be returned which the user can
invoke on (optional) arguments.

The command *initialize* is special. If present in the *commands* table, open-
database or open-database! will return the value of the *initialize* command. Notice
that arbitrary code can be run when the *initialize* procedure is automatically applied
to the enhanced relational-database.

Chapter 5: Database Packages 139

Note also that if you wish to shadow or hide from the user relational-database methods
described in Section 5.2.4 [Database Operations|, page 133, this can be done by a dis-
patch in the closure returned by the *initialize* expression rather than by entries in the
commands table if it is desired that the underlying methods remain accessible to code in
the *commands* table.

5.2.6.1 Database Extension

wrap-command-interface rdb Function
Returns relational database rdb wrapped with additional commands defined in its
*commands™ table.

add-command-tables rdb Function
The relational database rdb must be mutable. add-command-tables adds a *com-
mand* table to rdb; then returns (wrap-command-interface rdb).

open-command-database filename Function

open-command-database filename base-table-type Function
Returns an open enhanced relational database associated with filename. The database
will be opened with base-table type base-table-type) if supplied. If base-table-type is
not supplied, open-command-database will attempt to deduce the correct base-table-
type. If the database can not be opened or if it lacks the *commands* table, #f is

returned.
open-command-database! filename Function
open-command-database! filename base-table-type Function

Returns mutable open enhanced relational database . . .

open-command-database database Function
Returns database if it is an immutable relational database; #f otherwise.

open-command-database! database Function
Returns database if it is a mutable relational database; #f otherwise.

5.2.6.2 Command Intrinsics

Some commands are defined in all extended relational-databases. The are called just
like Section 5.2.4 [Database Operations], page 133.

add-domain domain-row Function
Adds domain-row to the domains table if there is no row in the domains table asso-
ciated with key (car domain-row) and returns #t. Otherwise returns #f£.

For the fields and layout of the domain table, See Section 5.2.6 [Catalog Representa-
tion], page 138. Currently, these fields are

e domain-name

Chapter 5: Database Packages 140

foreign-table
e domain-integrity-rule
o type-id

e type-param

The following example adds 3 domains to the ‘build’ database. ‘Optstring’ is either
a string or #f. filename is a string and build-whats is a symbol.

(for-each (build ’add-domain)
’((optstring #f
(lambda (x) (or (not x) (string? x)))
string
#£)
(filename #f #f string #f)
(build-whats #f #f symbol #f)))

delete-domain domain-name Function
Removes and returns the domain-name row from the domains table.

domain-checker domain Function
Returns a procedure to check an argument for conformance to domain domain.

5.2.6.3 Define-tables Example

The following example shows a new database with the name of ‘foo.db’ being created with
tables describing processor families and processor/os/compiler combinations.

The database command define-tables is defined to call define-tables with its argu-
ments. The database is also configured to print ‘Welcome’ when the database is opened.
The database is then closed and reopened.

(require ’databases)
(define my-rdb (create-database "foo.db" ’alist-table))

(define-tables my-rdb
? (*commands*

((name symbol))

((parameters parameter-list)
(procedure expression)
(documentation string))

((define-tables
no-parameters
no-parameter-names
(lambda (rdb) (lambda specs (apply define-tables rdb specs)))
"Create or Augment tables from list of specs")
(*initializex
no-parameters
no-parameter-names
(lambda (rdb) (display "Welcome") (newline) rdb)

Chapter 5: Database Packages

"Print Welcome"))))

((my-rdb ’define-tables)

> (processor-family

((family atom))

((also-ran processor-family))

((m68000 #£)

(m68030 m68000)
(1386 8086)
(8086 #£)
(powerpc #£)))

> (platform

((name symbol))

((processor processor-family)
(os symbol)

(compiler symbol))

((aix powerpc aix
(amiga-dice-c m68000 amiga
(amiga-aztec m68000 amiga
(amiga-sas/c-5.10 m68000 amiga
(atari-st-gcc m68000 atari
(atari-st-turbo-c m68000 atari
(borland-c-3.1 8086 ms-dos
(djgpp 1386 ms-dos
(linux 1386 linux
(microsoft-c 8086 ms-dos
(os/2-emx 1386 os/2
(turbo-c-2 8086 ms-dos
(watcom-9.0 1386 ms-dos

((my-rdb ’close-database))
(set! my-rdb (open-database "foo.db"
_|

Welcome

5.2.6.4 The *commands* Table

141

-)

dice-c)
aztec)
sas/c)
gcc)
turbo-c)
borland-c)
gcce)

gcce)
microsoft-c)
gcce)
turbo-c)
watcom))))

’alist-table))

The table *commands* in an enhanced relational-database has the fields (with domains):

PRI name symbol
parameters parameter-list
procedure expression

documentation string

The parameters field is a foreign key (domain parameter-list) of the *catalog-
datax* table and should have the value of a table described by *parameter-columns*.
This parameter-1ist table describes the arguments suitable for passing to the associated

Chapter 5: Database Packages 142

command. The intent of this table is to be of a form such that different user-interfaces
(for instance, pull-down menus or plain-text queries) can operate from the same table. A
parameter-1list table has the following fields:

PRI index uint
name symbol
arity parameter-arity
domain domain
defaulter expression
expander expression

documentation string

The arity field can take the values:
single Requires a single parameter of the specified domain.
optional A single parameter of the specified domain or zero parameters is acceptable.

boolean A single boolean parameter or zero parameters (in which case #£ is substituted)
is acceptable.

nary Any number of parameters of the specified domain are acceptable. The argu-
ment passed to the command function is always a list of the parameters.

nary1l One or more of parameters of the specified domain are acceptable. The argu-
ment passed to the command function is always a list of the parameters.

The domain field specifies the domain which a parameter or parameters in the indexth
field must satisfy.

The defaulter field is an expression whose value is either #f or a procedure of one
argument (the parameter-list) which returns a list of the default value or values as appro-
priate. Note that since the defaulter procedure is called every time a default parameter
is needed for this column, sticky defaults can be implemented using shared state with the
domain-integrity-rule.

5.2.6.5 Command Service

make-command-server rdb table-name Function
Returns a procedure of 2 arguments, a (symbol) command and a call-back procedure.
When this returned procedure is called, it looks up command in table table-name
and calls the call-back procedure with arguments:

command The command

command-value
The result of evaluating the expression in the procedure field of table-
name and calling it with rdb.

parameter-name
A list of the official name of each parameter. Corresponds to the name
field of the command’s parameter-table.

Chapter 5: Database Packages 143

positions

arities

types

defaulters

A list of the positive integer index of each parameter. Corresponds to the
index field of the command’s parameter-table.

A list of the arities of each parameter. Corresponds to the arity field
of the command’s parameter-table. For a description of arity see table
above.

A list of the type name of each parameter. Correspnds to the type-id
field of the contents of the domain of the command’s parameter-table.

A list of the defaulters for each parameter. Corresponds to the defaulters
field of the command’s parameter-table.

domain-integrity-rules

aliases

A list of procedures (one for each parameter) which tests whether a value
for a parameter is acceptable for that parameter. The procedure should
be called with each datum in the list for nary arity parameters.

A list of lists of (alias parameter-name). There can be more than one
alias per parameter-name.

For information about parameters, See Section 3.4.4 [Parameter lists|, page 54.

5.2.6.6 Command Example

Here is an example of setting up a command with arguments and parsing those argu-
ments from a getopt style argument list (see Section 3.4.1 [Getopt|, page 51).

(require
(require
(require
(require

’databases)
>fluid-let)
’parameters)
’getopt)

(define my-rdb (create-command-database #f ’alist-table))

(define-tables my-rdb
> (foo-params
parameter-columns
parameter-columnsx
((1 single-string single string

(2
(3
(4

(5

(lambda (pl) ’("str")) #f "single string")
nary-symbols nary symbol

(lambda (pl) ’()) #f "zero or more symbols")
naryl-symbols naryl symbol

(lambda (pl) ’(symb)) #f "one or more symbols")
optional-number optional uint

(lambda (pl) ’()) #f "zero or one number")

flag boolean boolean

(lambda (pl) ’(#f)) #f "a boolean flag")))

> (foo-pnames
((name string))

Chapter 5: Database Packages

((parameter-index uint))

((“S" 1)
("single-string" 1)
(llnll 2)
("nary-symbols" 2)
("N" 3)
("naryl-symbols" 3)
(lloll 4)
("optional-number" 4)
(Ilfll 5)

("flag" 5)))

> (my-commands

((name symbol))

((parameters parameter-list)
(parameter-names parameter-name-translation)
(procedure expression)

(documentation string))

((foo
foo-params
foo-pnames

(lambda (rdb) (lambda args (print args)))
"test command arguments"))))

(define (dbutil:serve-command-line rdb command-table
command argc argv)
(set! argv (if (vector? argv) (vector->list argv) argv))
((make-command-server rdb command-table)
command
(lambda (comname comval options positions
arities types defaulters dirs aliases)
(apply comval (getopt—->arglist
argc argv options positions
arities types defaulters dirs aliases)))))

(define (cmd . opts)
(fluid-let ((*optind* 1))
(printf "%-34s = "
(call-with-output-string
(lambda (pt) (write (cons ’cmd opts) pt))))
(set! opts (cons "cmd" opts))
(force-output)
(dbutil:serve-command-line
my-rdb ’my-commands ’foo (length opts) opts)))

(cmd) = ("str" O (symb) (O #f)
(cmd "-£f") = ("str" () (symb) () #t)
(cmd "--flag") = ("str" () (symb) () #t)
(cmd "-0177") =
(cmd n_g" n177||) =

("str" () (symb) (177) #f)
("str" (O (symb) (177) #f£)

144

Chapter 5: Database Packages 145

(cmd "--optional" "621") = ("str" () (symb) (621) #f)
(cmd "--optional=621") = ("str" () (symb) (621) #f)
(cmd "-s" "speciality") = ("speciality" () (symb) () #f)
(cmd "-sspeciality") = ("speciality" () (symb) () #f)
(cmd "--single" "serendipity") = ("serendipity" () (symb) () #f)
(cmd "--single=serendipity") = ("serendipity" () (symb) () #f)
(cmd "-n" "gravity" "piety") = ("str" () (piety gravity) () #f)
(cmd "-ngravity" "piety") = ("str" () (piety gravity) () #f)
(cmd "--nary" "chastity") = ("str" () (chastity) (O #f)
(cmd "--nary=chastity" "") = ("str" () (chastity) () #f)
(cmd "-N" "calamity") = ("str" () (calamity) () #f)
(cmd "-Ncalamity") = ("str" O (calamity) () #f)
(cmd "--naryl" "surety") = ("str" O (surety) O #f)
(cmd "--naryl=surety") = ("str" () (surety) () #f)
(cmd "-N" "levity" "fealty") = ("str" () (fealty levity) () #f)
(cmd "-Nlevity" "fealty") = ("str" () (fealty levity) () #f)
(cmd "--naryl" "surety" "brevity") = ("str" () (brevity surety) () #f)
(cmd "--naryl=surety" "brevity") = ("str" () (brevity surety) () #f)
(cmd "-7")
4|
Usage: cmd [OPTION ARGUMENT ...]

-f, --flag

-0, —--optional [=]<number>

-n, --nary[=]<symbols> ...

-N, --naryl[=]<symbols> ...

-s, —--single[=]<string>
ERROR: getopt->parameter-list "unrecognized option" "-7"

5.2.7 Database Reports

Code for generating database reports is in ‘report.scm’. After writing it using format, I
discovered that Common-Lisp format is not useable for this application because there is no
mechanismm for truncating fields. ‘report.scm’ needs to be rewritten using printf.

create-report rdb destination report-name table Procedure

create-report rdb destination report-name Procedure
The symbol report-name must be primary key in the table named *reports* in the
relational database rdb. destination is a port, string, or symbol. If destination is a:

port The table is created as ascii text and written to that port.

string The table is created as ascii text and written to the file named by desti-
nation.

symbol destination is the primary key for a row in the table named *printers*.

The report is prepared as follows:

Chapter 5: Database Packages 146

e Format (see Section 3.2 [Format|, page 39) is called with the header field and
the (list of) column-names of the table.

e Format is called with the reporter field and (on successive calls) each record in
the natural order for the table. A count is kept of the number of newlines output
by format. When the number of newlines to be output exceeds the number of
lines per page, the set of lines will be broken if there are more than minimum-
break left on this page and the number of lines for this row is larger or equal to
twice minimum-break.

e Format is called with the footer field and the (list of) column-names of the
table. The footer field should not output a newline.

e A new page is output.
e This entire process repeats until all the rows are output.

Each row in the table *reports™ has the fields:

name The report name.

default-table
The table to report on if none is specified.

header, footer
A format string. At the beginning and end of each page respectively, format
is called with this string and the (list of) column-names of this table.

reporter A format string. For each row in the table, format is called with this string
and the row.

minimum-break
The minimum number of lines into which the report lines for a row can be
broken. Use 0 if a row’s lines should not be broken over page boundaries.

Each row in the table *printers® has the fields:
name The printer name.

print-procedure
The procedure to call to actually print.

5.2.8 Database Browser

(require ’database-browse)

browse database Procedure
Prints the names of all the tables in database and sets browse’s default to database.

browse Procedure
Prints the names of all the tables in the default database.

browse table-name Procedure

For each record of the table named by the symbol table-name, prints a line composed
of all the field values.

Chapter 5: Database Packages 147

browse pathname Procedure
Opens the database named by the string pathname, prints the names of all its tables,
and sets browse’s default to the database.

browse database table-name Procedure
Sets browse’s default to database and prints the records of the table named by the
symbol table-name.

browse pathname table-name Procedure
Opens the database named by the string pathname and sets browse’s default to it;
browse prints the records of the table named by the symbol table-name.

5.3 Weight-Balanced Trees

(require ’wt-tree)

Balanced binary trees are a useful data structure for maintaining large sets of ordered
objects or sets of associations whose keys are ordered. MIT Scheme has an comprehensive
implementation of weight-balanced binary trees which has several advantages over the other
data structures for large aggregates:

e In addition to the usual element-level operations like insertion, deletion and lookup,
there is a full complement of collection-level operations, like set intersection, set union
and subset test, all of which are implemented with good orders of growth in time and
space. This makes weight balanced trees ideal for rapid prototyping of functionally
derived specifications.

e An element in a tree may be indexed by its position under the ordering of the keys, and
the ordinal position of an element may be determined, both with reasonable efficiency.

e Operations to find and remove minimum element make weight balanced trees simple
to use for priority queues.

e The implementation is functional rather than imperative. This means that operations
like ‘inserting’ an association in a tree do not destroy the old tree, in much the same way
that (+ 1 x) modifies neither the constant 1 nor the value bound to x. The trees are
referentially transparent thus the programmer need not worry about copying the trees.
Referential transparency allows space efficiency to be achieved by sharing subtrees.

These features make weight-balanced trees suitable for a wide range of applications,
especially those that require large numbers of sets or discrete maps. Applications that have
a few global databases and/or concentrate on element-level operations like insertion and
lookup are probably better off using hash-tables or red-black trees.

The size of a tree is the number of associations that it contains. Weight balanced
binary trees are balanced to keep the sizes of the subtrees of each node within a constant
factor of each other. This ensures logarithmic times for single-path operations (like lookup
and insertion). A weight balanced tree takes space that is proportional to the number of
associations in the tree. For the current implementation, the constant of proportionality is
six words per association.

Chapter 5: Database Packages 148

Weight balanced trees can be used as an implementation for either discrete sets or
discrete maps (associations). Sets are implemented by ignoring the datum that is associated
with the key. Under this scheme if an associations exists in the tree this indicates that the
key of the association is a member of the set. Typically a value such as (), #t or #f is
associated with the key.

Many operations can be viewed as computing a result that, depending on whether the
tree arguments are thought of as sets or maps, is known by two different names. An example
is wt—tree/member?, which, when regarding the tree argument as a set, computes the set
membership operation, but, when regarding the tree as a discrete map, wt-tree/member?
is the predicate testing if the map is defined at an element in its domain. Most names
in this package have been chosen based on interpreting the trees as sets, hence the name
wt-tree/member? rather than wt-tree/defined-at?.

The weight balanced tree implementation is a run-time-loadable option. To use weight
balanced trees, execute

(load-option ’wt-tree)

once before calling any of the procedures defined here.

5.3.1 Construction of Weight-Balanced Trees

Binary trees require there to be a total order on the keys used to arrange the elements
in the tree. Weight balanced trees are organized by types, where the type is an object
encapsulating the ordering relation. Creating a tree is a two-stage process. First a tree type
must be created from the predicate which gives the ordering. The tree type is then used
for making trees, either empty or singleton trees or trees from other aggregate structures
like association lists. Omnce created, a tree ‘knows’ its type and the type is used to test
compatibility between trees in operations taking two trees. Usually a small number of
tree types are created at the beginning of a program and used many times throughout the
program’s execution.

make-wt-tree-type key<? procedure+
This procedure creates and returns a new tree type based on the ordering predicate
key<?. Key<? must be a total ordering, having the property that for all key values

a, b and c:
(key<? a a) = #f
(and (key<? a b) (key<? b a)) = #f
(if (and (key<? a b) (key<? b c))
(key<? a c)
#t) = #t

Two key values are assumed to be equal if neither is less than the other by key<?.

Each call to make-wt-tree-type returns a distinct value, and trees are only compat-
ible if their tree types are eq?. A consequence is that trees that are intended to be
used in binary tree operations must all be created with a tree type originating from
the same call to make-wt-tree-type.

Chapter 5: Database Packages 149

number-wt-type variable+
A standard tree type for trees with numeric keys. Number-wt-type could have been
defined by

(define number-wt-type (make-wt-tree-type <))

string-wt-type variable+
A standard tree type for trees with string keys. String-wt-type could have been
defined by

(define string-wt-type (make-wt-tree-type string<?))

make-wt-tree wt-tree-type procedure+
This procedure creates and returns a newly allocated weight balanced tree. The tree
is empty, i.e. it contains no associations. Wt-tree-type is a weight balanced tree type
obtained by calling make-wt-tree-type; the returned tree has this type.

singleton-wt-tree wt-tree-type key datum procedure+
This procedure creates and returns a newly allocated weight balanced tree. The
tree contains a single association, that of datum with key. Wt-tree-type is a weight
balanced tree type obtained by calling make-wt-tree-type; the returned tree has
this type.

alist->wt-tree tree-type alist procedure+
Returns a newly allocated weight-balanced tree that contains the same associations
as alist. This procedure is equivalent to:

(lambda (type alist)
(let ((tree (make-wt-tree type)))
(for-each (lambda (association)
(wt-tree/add! tree
(car association)
(cdr association)))
alist)
tree))

5.3.2 Basic Operations on Weight-Balanced Trees

This section describes the basic tree operations on weight balanced trees. These oper-
ations are the usual tree operations for insertion, deletion and lookup, some predicates and
a procedure for determining the number of associations in a tree.

wt-tree? object procedure+
Returns #t if object is a weight-balanced tree, otherwise returns #f.

wt-tree/empty? wt-tree procedure+
Returns #t if wt-tree contains no associations, otherwise returns #f.

Chapter 5: Database Packages 150

wt-tree/size wt-tree procedure+
Returns the number of associations in wt-tree, an exact non-negative integer. This
operation takes constant time.

wt-tree/add wt-tree key datum procedure+
Returns a new tree containing all the associations in wt-tree and the association of
datum with key. If wt-tree already had an association for key, the new association
overrides the old. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

wt-tree/add! wt-tree key datum procedure+
Associates datum with key in wt-tree and returns an unspecified value. If wt-tree
already has an association for key, that association is replaced. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in wt-tree.

wt-tree/member? key wt-tree procedure+
Returns #t if wt-tree contains an association for key, otherwise returns #£. The aver-
age and worst-case times required by this operation are proportional to the logarithm
of the number of associations in wt-tree.

wt-tree/lookup wt-tree key default procedure+
Returns the datum associated with key in wt-tree. If wt-tree doesn’t contain an
association for key, default is returned. The average and worst-case times required
by this operation are proportional to the logarithm of the number of associations in
wt-tree.

wt-tree/delete wt-tree key procedure+
Returns a new tree containing all the associations in wt-tree, except that if wt-tree
contains an association for key, it is removed from the result. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in wt-tree.

wt-tree/delete! wt-tree key procedure+
If wt-tree contains an association for key the association is removed. Returns an
unspecified value. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

5.3.3 Advanced Operations on Weight-Balanced Trees

In the following the size of a tree is the number of associations that the tree contains,
and a smaller tree contains fewer associations.

Chapter 5: Database Packages 151

wt-tree/split< wt-tree bound procedure+
Returns a new tree containing all and only the associations in wt-tree which have
a key that is less than bound in the ordering relation of the tree type of wt-tree.
The average and worst-case times required by this operation are proportional to the
logarithm of the size of wt-tree.

wt-tree/split> wt-tree bound procedure+
Returns a new tree containing all and only the associations in wt-tree which have a
key that is greater than bound in the ordering relation of the tree type of wt-tree.
The average and worst-case times required by this operation are proportional to the
logarithm of size of wt-tree.

wt-tree/union wt-tree-1 wt-tree-2 procedure+

Returns a new tree containing all the associations from both trees. This operation
is asymmetric: when both trees have an association for the same key, the returned
tree associates the datum from wt-tree-2 with the key. Thus if the trees are viewed
as discrete maps then wt-tree/union computes the map override of wt-tree-1 by
wt-tree-2. If the trees are viewed as sets the result is the set union of the arguments.
The worst-case time required by this operation is proportional to the sum of the sizes
of both trees. If the minimum key of one tree is greater than the maximum key of
the other tree then the time required is at worst proportional to the logarithm of the
size of the larger tree.

wt-tree/intersection wt-tree-1 wt-tree-2 procedure+

Returns a new tree containing all and only those associations from wt-tree-1 which
have keys appearing as the key of an association in wt-tree-2. Thus the associated
data in the result are those from wt-tree-1. If the trees are being used as sets the
result is the set intersection of the arguments. As a discrete map operation, wt-
tree/intersection computes the domain restriction of wt-tree-1 to (the domain of)
wt-tree-2. The time required by this operation is never worse that proportional to
the sum of the sizes of the trees.

wt-tree/difference wi-tree-1 wt-tree-2 procedure+
Returns a new tree containing all and only those associations from wt-tree-1 which
have keys that do not appear as the key of an association in wt-tree-2. If the trees
are viewed as sets the result is the asymmetric set difference of the arguments. As
a discrete map operation, it computes the domain restriction of wt-tree-1 to the
complement of (the domain of) wt-tree-2. The time required by this operation is
never worse that proportional to the sum of the sizes of the trees.

Wt-tree/ subset? wt-tree-1 wt-tree-2 procedure+
Returns #t iff the key of each association in wt-tree-1 is the key of some association
in wt-tree-2, otherwise returns #f. Viewed as a set operation, wt-tree/subset? is
the improper subset predicate. A proper subset predicate can be constructed:

(define (proper-subset? sl s2)
(and (wt-tree/subset? s1 s2)

Chapter 5: Database Packages 152

(< (wt-tree/size sl1) (wt-tree/size s2))))

As a discrete map operation, wt-tree/subset? is the subset test on the domain(s)
of the map(s). In the worst-case the time required by this operation is proportional
to the size of wt-tree-1.

wt-tree/set-equal? wt-tree-1 wt-tree-2 procedure+
Returns #t iff for every association in wt-tree-1 there is an association in wt-tree-2
that has the same key, and vice versa.

Viewing the arguments as sets wt-tree/set-equal? is the set equality predicate. As
a map operation it determines if two maps are defined on the same domain.

This procedure is equivalent to

(lambda (wt-tree-1 wt-tree-2)
(and (wt-tree/subset? wt-tree-1 wt-tree-2
(wt-tree/subset? wt-tree-2 wt-tree-1)))

In the worst-case the time required by this operation is proportional to the size of the
smaller tree.

wt-tree/fold combiner initial wt-tree procedure+
This procedure reduces wt-tree by combining all the associations, using an reverse
in-order traversal, so the associations are visited in reverse order. Combiner is a proce-
dure of three arguments: a key, a datum and the accumulated result so far. Provided
combiner takes time bounded by a constant, wt-tree/fold takes time proportional
to the size of wt-tree.

A sorted association list can be derived simply:

(wt-tree/fold (lambda (key datum list)
(cons (cons key datum) list))
i)

wt-tree))
The data in the associations can be summed like this:

(wt-tree/fold (lambda (key datum sum) (+ sum datum))
0
wt-tree)

wt-tree/for-each action wt-tree procedure+
This procedure traverses the tree in-order, applying action to each association. The
associations are processed in increasing order of their keys. Action is a procedure of
two arguments which take the key and datum respectively of the association. Provided
action takes time bounded by a constant, wt-tree/for-each takes time proportional
to in the size of wt-tree. The example prints the tree:

(wt-tree/for-each (lambda (key value)
(display (list key value)))
wt-tree))

Chapter 5: Database Packages 153

5.3.4 Indexing Operations on Weight-Balanced Trees

Weight balanced trees support operations that view the tree as sorted sequence of
associations. Elements of the sequence can be accessed by position, and the position of an
element in the sequence can be determined, both in logarthmic time.

wt-tree/index wt-tree index procedure+
wt-tree/index-datum wt-tree index procedure+
wt-tree/index-pair wt-tree index procedure+

Returns the 0-based indexth association of wt-tree in the sorted sequence under
the tree’s ordering relation on the keys. wt-tree/index returns the indexth key,
wt-tree/index-datum returns the datum associated with the indexth key and wt-
tree/index-pair returns a new pair (key . datum) which is the cons of the indexth
key and its datum. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree.

These operations signal an error if the tree is empty, if index<0, or if index is greater
than or equal to the number of associations in the tree.

Indexing can be used to find the median and maximum keys in the tree as follows:

median: (wt-tree/index wt-tree
(quotient (wt-tree/size wt-tree) 2))

maximum: (wt-tree/index wt-tree
(-1+ (wt-tree/size wt-tree)))

wt-tree/rank wt-tree key procedure+
Determines the 0-based position of key in the sorted sequence of the keys under
the tree’s ordering relation, or #f if the tree has no association with for key. This
procedure returns either an exact non-negative integer or #£. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in the tree.

wt-tree/min wt-tree procedure+
wt-tree/min-datum wt-tree procedure+
wt-tree/min-pair wt-tree procedure+

Returns the association of wt-tree that has the least key under the tree’s ordering
relation. wt-tree/min returns the least key, wt-tree/min-datum returns the da-
tum associated with the least key and wt-tree/min-pair returns a new pair (key
. datum) which is the cons of the minimum key and its datum. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in the tree.

These operations signal an error if the tree is empty. They could be written

(define (wt-tree/min tree) (wt-tree/index tree 0))
(define (wt-tree/min-datum tree) (wt-tree/index-datum tree 0))
(define (wt-tree/min-pair tree) (wt-tree/index-pair tree 0))

Chapter 5: Database Packages 154

wt-tree/delete-min wt-tree procedure+
Returns a new tree containing all of the associations in wt-tree except the association
with the least key under the wt-tree’s ordering relation. An error is signalled if
the tree is empty. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree. This operation
is equivalent to

(wt-tree/delete wt-tree (wt-tree/min wt-tree))

wt-tree/delete-min! wt-tree procedure+
Removes the association with the least key under the wt-tree’s ordering relation. An
error is signalled if the tree is empty. The average and worst-case times required by
this operation are proportional to the logarithm of the number of associations in the
tree. This operation is equivalent to

(wt-tree/delete! wt-tree (wt-tree/min wt-tree))

Chapter 6: Other Packages 155

6 Other Packages

6.1 Data Structures

6.1.1 Arrays

(require ’array)

array? obj Function
Returns #t if the obj is an array, and #f if not.

Note: Arrays are not disjoint from other Scheme types. Strings and vectors also satisfy
array?. A disjoint array predicate can be written:

(define (strict-array? obj)
(and (array? obj) (not (string? obj)) (mot (vector? obj))))

array=? arrayl array2 Function
Returns #t if arrayl and array2 have the same rank and shape and the corresponding
elements of arrayl and array2 are equal?.

(array=7 (create-array ’#(foo) 3 3) (create-array ’#(foo) (0 2) ’(0 2)))
= #t

create-array prototype boundl bound?2 . .. Function
Creates and returns an array of type prototype with dimensions boundl, bound2,

. and filled with elements from prototype. prototype must be an array, vector, or
string. The implementation-dependent type of the returned array will be the same as
the type of prototype; except if that would be a vector or string with non-zero origin,
in which case some variety of array will be returned.

If the prototype has no elements, then the initial contents of the returned array are
unspecified. Otherwise, the returned array will be filled with the element at the origin
of prototype.

These functions return a uniform array prototype enclosing the optional argument (which
must be of the correct type). If the uniform-array type is supported by the implementation,
then it is returned; promoting to the next larger precision type; promoting finally to vector.

ac64 z Function
ac64 Function
Returns a high-precision complex uniform-array prototype.

Chapter 6: Other Packages 156

ac32 z Function
ac32 Function
Returns a complex uniform-array prototype.

ar64 x Function
ar64 Function
Returns a high-precision real uniform-array prototype.

ar32 x Function
ar32 Function
Returns a real uniform-array prototype.

as64 n Function

as64 Function
Returns an exact signed integer uniform-array prototype with at least 64 bits of
precision.

as32 n Function

as32 Function
Returns an exact signed integer uniform-array prototype with at least 32 bits of
precision.

asl6 n Function

asl6 Function
Returns an exact signed integer uniform-array prototype with at least 16 bits of
precision.

as8 n Function

as8 Function
Returns an exact signed integer uniform-array prototype with at least 8 bits of pre-
cision.

aub4 k Function

aub4 Function

Returns an exact non-negative integer uniform-array prototype with at least 64 bits
of precision.

au3d2 k Function
au3d2 Function
Returns an exact non-negative integer uniform-array prototype with at least 32 bits
of precision.

aul6 k Function
aul6 Function
Returns an exact non-negative integer uniform-array prototype with at least 16 bits
of precision.

Chapter 6: Other Packages 157

au8 k Function

aus8 Function
Returns an exact non-negative integer uniform-array prototype with at least 8 bits of
precision.

atl bool Function

atl Function

Returns a boolean uniform-array prototype.

make-array initial-value boundl bound? . .. Function
Creates and returns an array with dimensions boundl, bound2, ... and filled with
initial-value.

make-array is a legacy function — now defined in terms of create-array.

(define (make-array initial-value . dimensions)
(apply create-array (vector initial-value) dimensions))

When constructing an array, bound is either an inclusive range of indices expressed as a
two element list, or an upper bound expressed as a single integer. So

(create-array ’#(foo) 3 3) = (make-array ’#(foo) ’(0 2) (0 2))

make-shared-array array mapper boundl bound? ... Function
make-shared-array can be used to create shared subarrays of other arrays. The
mapper is a function that translates coordinates in the new array into coordinates in
the old array. A mapper must be linear, and its range must stay within the bounds
of the old array, but it can be otherwise arbitrary. A simple example:

(define fred (create-array ’#(#f) 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal ’foo 3)
(array-ref fred 3 3)
= FO00
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))

2 2))
(array-ref freds-center 0 0)
= F0O0
array-rank obj Function

Returns the number of dimensions of obj. If obj is not an array, 0 is returned.

array-shape array Function
Returns a list of inclusive bounds.

(array-shape (create-array ’#() 3 5))
= (0 2) (0 4)

Chapter 6: Other Packages 158

array-dimensions array Function
array-dimensions is similar to array-shape but replaces elements with a 0 minimum
with one greater than the maximum.

(array-dimensions (create-array ’#() 3 5))
= (3 5)

array-in-bounds? array indexl index2 . .. Function
Returns #t if its arguments would be acceptable to array-ref.

array-ref array indexl index2 . .. Function
Returns the (indexl, index2, ...) element of array.

array-set! array obj index1 index2 . .. Function
Stores obj in the (indexl, index2, ...) element of array. The value returned by

array-set! is unspecified.

6.1.2 Subarrays

(require ’subarray)

subarray array select . . . Function
selects a subset of an array. For array of rank n, there must be at least n selects
arguments. For 0 <= j < n, selectsj is either an integer, a list of two integers within
the range for the jth index, or #f.

When selectsj is a list of two integers, then the jth index is restricted to that subrange
in the returned array.

When selectsj is #f, then the full range of the jth index is accessible in the returned
array. An elided argument is equivalent to #f.

When selectsj is an integer, then the rank of the returned array is less than array,
and only elements whose jth index equals selects; are shared.

> (define ra ’#2A((a b c) (d e £)))
#<unspecified>

> (subarray ra O #f)
#1A(a b c)

> (subarray ra 1 #f)
#1A(d e f)

> (subarray ra #f 1)
#1A(b e)

> (subarray ra ’(0 1) #f)
#2A((a b c) (d e £))

> (subarray ra #f ’(0 1))
#2A((a b) (d e))

> (subarray ra #f ’(1 2))
#24((b c) (e £))

Chapter 6: Other Packages

subarrayQ array select . . .

Behaves like subarray, but aligns the returned array origin to 0

array-align array coord . ..

159

Function

Function

Returns an array shared with array but with a different origin. The coords are the
exact integer coordinates of the new origin. Indexes corresponding to missing or #f

coordinates are not realigned.
For example:

(define ra2 (create-array ’#(5) ’
(array-shape ra2)

(array-shape (array-align ra2 0 0))

(array-shape (array-align ra2 0))
(array-shape (array-align ra2))

(array-shape (array-align ra2 0 #f))

(array-shape (array-align ra2 #f

array-trim array trim . ..

(59 °

~

(5
qQ
qQ
((5
(o
((5

R

0))

-4 0)))

9
4)
4)
9)
4)
9)

(-4 0))
(0 4)
(-4 0))
(-4 0))
(-4 0))
(0 40

Function

Returns a subarray sharing contents with array except for slices removed from either
side of each dimension. Each of the trims is an exact integer indicating how much to
trim. A positive s trims the data from the lower end and reduces the upper bound of
the result; a negative s trims from the upper end and increases the lower bound.

For example:

(array-trim ’#(0 1 2 3 4) 1) =
(array-trim ’#(0 1 2 3 4) -1) =

(require ’array-for-each)
(define (centered-difference ra)
(array-map - (array-trim ra 1)
(define (forward-difference ra)
(array-map - (array-trim ra 1)
(define (backward-difference ra)
(array-map - ra (array-trim ra

#1A(1 2 3 4) ;; shape is ((0 3))
#1A(0 1 2 3) ;; shape is ((1 4))

(array-trim ra -1)))

ra))
-1)))

(centered-difference ’#(0 1 3 5 9 22))
= #1A(3 4 6 17) ;;shape is ((1 4))
(backward-difference #(0 1 3 5 9 22))

= #1A(1 2 2 4 13) ;; shape is ((1 5))
(forward-difference ’#(0 1 3 5 9 22))
= #(1 2 2 4 13) ;; shape is ((0 4))

6.1.3 Array Mapping

(require ’array-for-each)

Chapter 6: Other Packages 160

array-map! array0 proc arrayl . .. Function
arrayl, ... must have the same number of dimensions as array0 and have a range
for each index which includes the range for the corresponding index in array0. proc
is applied to each tuple of elements of arrayl ... and the result is stored as the
corresponding element in array(. The value returned is unspecified. The order of
application is unspecified.

array-for-each proc array0 . .. Function
proc is applied to each tuple of elements of array0 . .. in row-major order. The value
returned is unspecified.

array-indexes array Function
Returns an array of lists of indexes for array such that, if Ii is a list of indexes for
which array is defined, (equal? Ii (apply array-ref (array-indexes array) Ii)).

array-index-map! array proc Function
applies proc to the indices of each element of array in turn, storing the result in
the corresponding element. The value returned and the order of application are
unspecified.

One can implement array-indexes as

(define (array-indexes array)
(let ((ra (apply create-array ’#() (array-shape array))))
(array-index-map! ra (lambda x x))
ra))

Another example:

(define (apl:index-generator n)
(let ((v (make-vector n 1)))
(array-index-map! v (lambda (i) 1))

v))

array-copy! source destination Function
Copies every element from vector or array source to the corresponding element of
destination. destination must have the same rank as source, and be at least as large
in each dimension. The order of copying is unspecified.

6.1.4 Association Lists

(require ’alist)

Alist functions provide utilities for treating a list of key-value pairs as an associative
database. These functions take an equality predicate, pred, as an argument. This predicate
should be repeatable, symmetric, and transitive.

Alist functions can be used with a secondary index method such as hash tables for
improved performance.

Chapter 6: Other Packages 161

predicate->asso pred Function
Returns an association function (like assq, assv, or assoc) corresponding to pred.
The returned function returns a key-value pair whose key is pred-equal to its first
argument or #f if no key in the alist is pred-equal to the first argument.

alist-inquirer pred Function
Returns a procedure of 2 arguments, alist and key, which returns the value associated
with key in alist or #f if key does not appear in alist.

alist-associator pred Function
Returns a procedure of 3 arguments, alist, key, and value, which returns an alist
with key and value associated. Any previous value associated with key will be lost.
This returned procedure may or may not have side effects on its alist argument. An
example of correct usage is:

(define put (alist-associator string-ci=?))
(define alist ’())
(set! alist (put alist "Foo" 9))

alist-remover pred Function
Returns a procedure of 2 arguments, alist and key, which returns an alist with an
association whose key is key removed. This returned procedure may or may not have
side effects on its alist argument. An example of correct usage is:

(define rem (alist-remover string-ci=7))
(set! alist (rem alist "foo"))

alist-map proc alist Function
Returns a new association list formed by mapping proc over the keys and values of
alist. proc must be a function of 2 arguments which returns the new value part.

alist-for-each proc alist Function
Applies proc to each pair of keys and values of alist. proc must be a function of 2
arguments. The returned value is unspecified.

6.1.5 Byte

(require ’byte)

Some algorithms are expressed in terms of arrays of small integers. Using Scheme
strings to implement these arrays is not portable vis-a-vis the correspondence between
integers and characters and non-ascii character sets. These functions abstract the notion of
a byte.

byte-ref bytes k Function
k must be a valid index of bytes. byte-ref returns byte k of bytes using zero-origin
indexing.

Chapter 6: Other Packages 162

byte-set! bytes k byte Procedure
k must be a valid index of bytes%, and byte must be a small integer. Byte-set!
stores byte in element k of bytes and returns an unspecified value.

make-bytes k Function

make-bytes k byte Function
Make-bytes returns a newly allocated byte-array of length k. If byte is given, then
all elements of the byte-array are initialized to byte, otherwise the contents of the
byte-array are unspecified.

bytes-length bytes Function
bytes-length returns length of byte-array bytes.

bytes byte ... Function
Returns a newly allocated byte-array composed of the arguments.

bytes->list bytes Function
list->bytes bytes Function
Bytes->1list returns a newly allocated list of the bytes that make up the given
byte-array. List->bytes returns a newly allocated byte-array formed from the small
integers in the list bytes. Bytes->1ist and 1ist->bytes are inverses so far as equal?
is concerned.

Input and output of bytes should be with ports opened in binary mode (see Section 1.5.4
[Input/Output], page 8). Calling open-file with rb or 'wb modes argument will return a
binary port if the Scheme implementation supports it.

write-byte byte Function
write-byte byte port Function
Writes the byte byte (not an external representation of the byte) to the given port
and returns an unspecified value. The port argument may be omitted, in which case
it defaults to the value returned by current-output-port.

read-byte Function

read-byte port Function
Returns the next byte available from the input port, updating the port to point to
the following byte. If no more bytes are available, an end of file object is returned.
Port may be omitted, in which case it defaults to the value returned by current-
input-port.

6.1.6 MAT-File Format

(require ’matfile)

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf

Chapter 6: Other Packages 163

This package reads MAT-File Format version 4 (MATLAB) binary data files. MAT-files
written from big-endian or little-endian computers having IEEE format numbers are cur-
rently supported. Support for files written from VAX or Cray machines could also be
added.

The numeric and text matrix types handled; support for sparse matrices awaits a sample
file.

matfile:read filename Function
filename should be a string naming an existing file containing a MATLAB Version 4
MAT-File. The matfile:read procedure reads matrices from the file and returns a
list of the results; a list of the name string and array for each matrix.

matfile:load filename Function
filename should be a string naming an existing file containing a MATLAB Version
4 MAT-File. The matfile:load procedure reads matrices from the file and defines
the string-ci->symbol for each matrix to its corresponding array. matfile:load
returns a list of the symbols defined.

6.1.7 Portable Image Files

(require ’pnm)

pnm:type-dimensions path Function
The string path must name a portable bitmap graphics file. pnm:type-dimensions
returns a list of 4 items:

1. A symbol describing the type of the file named by path.
2. The image width in pixels.
3. The image height in pixels.

4. The maximum value of pixels assume in the file.
The current set of file-type symbols is:

pbm
pbm-raw Black-and-White image; pixel values are 0 or 1.

pgm
pgm-raw Gray (monochrome) image; pixel values are from 0 to maxval specified
in file header.

ppm
ppm-raw RGB (full color) image; red, green, and blue interleaved pixel values are
from 0 to maxval

pnm:image-file->array path array Function
Reads the portable bitmap graphics file named by path into array. array must be
the correct size and type for path. array is returned.

Chapter 6: Other Packages 164

pnm:image-file->array path Function
pnm:image-file->array creates and returns an array with the portable bitmap
graphics file named by path read into it.

pnm:array-write type array maxval path Procedure
Writes the contents of array to a type image file named path. The file will have pixel
values between 0 and maxval, which must be compatible with type. For ‘pbm’ files,
maxval must be ‘1.

6.1.8 Collections

(require ’collect)

Routines for managing collections. Collections are aggregate data structures supporting
iteration over their elements, similar to the Dylan(TM) language, but with a different
interface. They have elements indexed by corresponding keys, although the keys may be
implicit (as with lists).

New types of collections may be defined as YASOS objects (see Section 2.8 [Yasos,
page 28). They must support the following operations:

e (collection? self) (always returns #t);
e (size self) returns the number of elements in the collection;

e (print self port) is a specialized print operation for the collection which prints a
suitable representation on the given port or returns it as a string if port is #t;

e (gen-elts self) returns a thunk which on successive invocations yields elements of self
in order or gives an error if it is invoked more than (size self) times;

o (gen-keys self) is like gen-elts, but yields the collection’s keys in order.

They might support specialized for-each-key and for-each-elt operations.

collection? obj Function
A predicate, true initially of lists, vectors and strings. New sorts of collections must
answer #t to collection?.

map-elts proc collectionl . . . Procedure

do-elts proc collectionl . .. Procedure
proc is a procedure taking as many arguments as there are collections (at least one).
The collections are iterated over in their natural order and proc is applied to the
elements yielded by each iteration in turn. The order in which the arguments are
supplied corresponds to te order in which the collections appear. do-elts is used
when only side-effects of proc are of interest and its return value is unspecified. map-
elts returns a collection (actually a vector) of the results of the applications of proc.

Example:

(map-elts + (list 1 2 3) (vector 1 2 3))
= #(2 4 6)

Chapter 6: Other Packages 165

map-keys proc collectionl . . . Procedure

do-keys proc collectionl . .. Procedure
These are analogous to map-elts and do-elts, but each iteration is over the collec-
tions’ keys rather than their elements.

Example:
(map-keys + (list 1 2 3) (vector 1 2 3))
= #(0 2 4)
for-each-key collection proc Procedure
for-each-elt collection proc Procedure

These are like do-keys and do-elts but only for a single collection; they are poten-
tially more efficient.

reduce proc seed collectionl . . . Function
A generalization of the list-based comlist:reduce-init (see Section 6.2.1.3 |Lists
as sequences|, page 182) to collections which will shadow the list-based version if
(require ’collect) follows (require ’common-list-functions) (see Section 6.2.1
[Common List Functions|, page 177).

Examples:
(reduce + 0 (vector 1 2 3))
= 6
(reduce union () ’((abc) (b cd) (da)))
= (c bda).
any? pred collectionl . . . Function

A generalization of the list-based some (see Section 6.2.1.3 [Lists as sequences|,
page 182) to collections.

Example:

(any? odd? (list 2 3 4 5))
= #t

every? pred collectionl . .. Function
A generalization of the list-based every (see Section 6.2.1.3 [Lists as sequences]
page 182) to collections.

Example:
(every? collection? ’((1 2) #(1 2)))
= #t
empty? collection Function
Returns #t iff there are no elements in collection.
(empty? collection) = (zero? (size collection))
size collection Function

Returns the number of elements in collection.

Chapter 6: Other Packages 166

Setter list-ref Function

See Section 2.8.3 [Setters], page 29 for a definition of setter. N.B. (setter list-ref)
doesn’t work properly for element 0 of a list.

Here is a sample collection: simple-table which is also a table.

(define-predicate TABLE?)

(define-operation (LOOKUP table key failure-object))
(define-operation (ASSOCIATE! table key value)) ;; returns key
(define-operation (REMOVE! table key)) ;3 returns value

(define (MAKE-SIMPLE-TABLE)
(let ((table (list)))
(object
;; table behaviors
((TABLE? self) #t)
((SIZE self) (size table))
((PRINT self port) (format port "#<SIMPLE-TABLE>"))
((LOOKUP self key failure-object)
(cond
((assq key table) => cdr)
(else failure-object)
)
((ASSOCIATE! self key value)
(cond
((assq key table)
=> (lambda (bucket) (set-cdr! bucket value) key))
(else
(set! table (cons (cons key value) table))
key)
)
((REMOVE! self key);; returns old value
(cond
((null? table) (slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar table))
(let ((value (cdar table)))
(set! table (cdr table))
value)
)
(else
(let loop ((last table) (this (cdr table)))
(cond
((null? this)
(slib:error "TABLE:REMOVE! Key not found: " key))
((eq? key (caar this))
(let ((value (cdar this)))
(set-cdr! last (cdr this))
value)
)

(else

Chapter 6: Other Packages 167

(loop (cdr last) (cdr this)))
)))
)

;3 collection behaviors

((COLLECTION? self) #t)

((GEN-KEYS self) (collect:list-gen-elts (map car table)))
((GEN-ELTS self) (collect:list-gen-elts (map cdr table)))
((FOR-EACH-KEY self proc)

(for-each (lambda (bucket) (proc (car bucket))) table)

)

((FOR-EACH-ELT self proc)

(for-each (lambda (bucket) (proc (cdr bucket))) table)

)
)))

6.1.9 Dynamic Data Type

(require ’dynamic)

make-dynamic obj Function
Create and returns a new dynamic whose global value is obj.

dynamic? obj Function
Returns true if and only if obj is a dynamic. No object satisfying dynamic? satisfies
any of the other standard type predicates.

dynamic-ref dyn Function
Return the value of the given dynamic in the current dynamic environment.

dynamic-set! dyn obj Procedure
Change the value of the given dynamic to obj in the current dynamic environment.
The returned value is unspecified.

call-with-dynamic-binding dyn obj thunk Function
Invoke and return the value of the given thunk in a new, nested dynamic environment
in which the given dynamic has been bound to a new location whose initial contents
are the value obj. This dynamic environment has precisely the same extent as the
invocation of the thunk and is thus captured by continuations created within that
invocation and re-established by those continuations when they are invoked.

The dynamic-bind macro is not implemented.

6.1.10 Hash Tables

(require ’hash-table)

Chapter 6: Other Packages 168

predicate->hash pred Function
Returns a hash function (like hashq, hashv, or hash) corresponding to the equality
predicate pred. pred should be eq?, eqv?, equal?, =, char=7, char-ci=?7, string="7,
or string-ci="7.

A hash table is a vector of association lists.

make-hash-table k Function
Returns a vector of k empty (association) lists.

Hash table functions provide utilities for an associative database. These functions take
an equality predicate, pred, as an argument. pred should be eq?, eqv?, equal?, =, char="7,
char-ci=7, string=7, or string-ci="7.

predicate->hash-asso pred Function
Returns a hash association function of 2 arguments, key and hashtab, corresponding
to pred. The returned function returns a key-value pair whose key is pred-equal to
its first argument or #£ if no key in hashtab is pred-equal to the first argument.

hash-inquirer pred Function
Returns a procedure of 2 arguments, hashtab and key, which returns the value asso-
ciated with key in hashtab or #f if key does not appear in hashtab.

hash-associator pred Function
Returns a procedure of 3 arguments, hashtab, key, and value, which modifies hashtab
so that key and value associated. Any previous value associated with key will be lost.

hash-remover pred Function
Returns a procedure of 2 arguments, hashtab and key, which modifies hashtab so that
the association whose key is key is removed.

hash-map proc hash-table Function
Returns a new hash table formed by mapping proc over the keys and values of hash-
table. proc must be a function of 2 arguments which returns the new value part.

hash-for-each proc hash-table Function
Applies proc to each pair of keys and values of hash-table. proc must be a function
of 2 arguments. The returned value is unspecified.

6.1.11 Hashing

(require ’hash)

These hashing functions are for use in quickly classifying objects. Hash tables use these
functions.

Chapter 6: Other Packages 169

hashq obj k Function
hashv obj k Function
hash obj k Function

Returns an exact non-negative integer less than k. For each non-negative integer less
than k there are arguments obj for which the hashing functions applied to obj and k
returns that integer.

For hashq, (eq? obj1 obj2) implies (= (hashq objl k) (hashq obj2)).
For hashv, (eqv? objl obj2) implies (= (hashv objl k) (hashv obj2)).
For hash, (equal? objl obj2) implies (= (hash obj1l k) (hash obj2)).

hash, hashv, and hashq return in time bounded by a constant. Notice that items
having the same hash implies the items have the same hashv implies the items have
the same hashgq.

(require ’sierpinski)

make-sierpinski-indexer max-coordinate Function
Returns a procedure (eg hash-function) of 2 numeric arguments which preserves near-
ness in its mapping from NxN to N.

max-coordinate is the maximum coordinate (a positive integer) of a population of
points. The returned procedures is a function that takes the x and y coordinates of
a point, (non-negative integers) and returns an integer corresponding to the relative
position of that point along a Sierpinski curve. (You can think of this as computing
a (pseudo-) inverse of the Sierpinski spacefilling curve.)

Example use: Make an indexer (hash-function) for integer points lying in square of
integer grid points [0,99]x[0,99]:

(define space-key (make-sierpinski-indexer 100))
Now let’s compute the index of some points:

(space-key 24 78) = 9206
(space-key 23 80) = 9172

Note that locations (24, 78) and (23, 80) are near in index and therefore, because
the Sierpinski spacefilling curve is continuous, we know they must also be near in the
plane. Nearness in the plane does not, however, necessarily correspond to nearness
in index, although it tends to be so.

Example applications:

e Sort points by Sierpinski index to get heuristic solution to travelling salesman
problem. For details of performance, see L. Platzman and J. Bartholdi, "Spacefill-
ing curves and the Euclidean travelling salesman problem", JACM 36(4):719-737
(October 1989) and references therein.

e Use Sierpinski index as key by which to store 2-dimensional data in a 1-
dimensional data structure (such as a table). Then locations that are near
each other in 2-d space will tend to be near each other in 1-d data structure; and
locations that are near in 1-d data structure will be near in 2-d space. This can
significantly speed retrieval from secondary storage because contiguous regions

Chapter 6: Other Packages 170

in the plane will tend to correspond to contiguous regions in secondary storage.
(This is a standard technique for managing CAD/CAM or geographic data.)

(require ’soundex)

soundex name Function
Computes the sounder hash of name. Returns a string of an initial letter and up to
three digits between 0 and 6. Soundex supposedly has the property that names that
sound similar in normal English pronunciation tend to map to the same key.

Soundex was a classic algorithm used for manual filing of personal records before the
advent of computers. It performs adequately for English names but has trouble with
other languages.

See Knuth, Vol. 3 Sorting and searching, pp 391-2

To manage unusual inputs, soundex omits all non-alphabetic characters. Conse-
quently, in this implementation:

(soundex <string of blanks>) = "
(soundex "") = "

Examples from Knuth:

(map soundex ’("Euler" "Gauss" "Hilbert" "Knuth"
"Lloyd" "Lukasiewicz"))
= ("E460" "G200" "H416" "K530" "L300" "L222")

(map soundex ’("Ellery" "Ghosh" "Heilbronn" "Kant"
"Ladd" "Lissajous"))
= ("E460" "G200" "H416" "K530" "L300" "L222")

Some cases in which the algorithm fails (Knuth):
(map soundex ’("Rogers" "Rodgers")) = ("R262" "R326")

(map soundex ’("Sinclair" "St. Clair")) = ("S524" "S324")

(map soundex ’("Tchebysheff" "Chebyshev")) = ("T212" "C121")

6.1.12 Macroless Object System

(require ’object)

This is the Macroless Object System written by Wade Humeniuk (whumeniu@datap.ca).
Conceptual Tributes: Section 2.8 [Yasos|, page 28, MacScheme’s %object, CLOS, Lack of
RARS macros.

6.1.13 Concepts

OBJECT An object is an ordered association-list (by eq?) of methods (procedures).
Methods can be added (make-method!), deleted (unmake-method!) and re-
trieved (get-method). Objects may inherit methods from other objects. The

Chapter 6: Other Packages 171

object binds to the environment it was created in, allowing closures to be used
to hide private procedures and data.

GENERIC-METHOD
A generic-method associates (in terms of eq?) object’s method. This allows
scheme function style to be used for objects. The calling scheme for using a
generic method is (generic-method object paraml param?2 ...).

METHOD A method is a procedure that exists in the object. To use a method get-method
must be called to look-up the method. Generic methods implement the get-
method functionality. Methods may be added to an object associated with any
scheme obj in terms of eq?

GENERIC-PREDICATE
A generic method that returns a boolean value for any scheme obj.

PREDICATE
A object’s method asscociated with a generic-predicate. Returns #t.

6.1.14 Procedures

make-object ancestor . .. Function
Returns an object. Current object implementation is a tagged vector. ancestors are
optional and must be objects in terms of object?. ancestors methods are included
in the object. Multiple ancestors might associate the same generic-method with a
method. In this case the method of the ancestor first appearing in the list is the one
returned by get-method.

object? obj Function
Returns boolean value whether obj was created by make-object.

make-generic-method exception-procedure Function
Returns a procedure which be associated with an object’s methods. If exception-
procedure is specified then it is used to process non-objects.

make-generic-predicate Function
Returns a boolean procedure for any scheme object.

make-method! object generic-method method Function
Associates method to the generic-method in the object. The method overrides any
previous association with the generic-method within the object. Using unmake-
method! will restore the object’s previous association with the generic-method.
method must be a procedure.

make-predicate! object generic-preciate Function
Makes a predicate method associated with the generic-predicate.

Chapter 6: Other Packages 172

unmake-method! object generic-method Function
Removes an object’s association with a generic-method .

get-method object generic-method Function
Returns the object’s method associated (if any) with the generic-method. If no asso-
ciated method exists an error is flagged.

6.1.15 Examples

(require ’object)

(define

(define

instantiate (make-generic-method))

(make-instance-object . ancestors)

(define self (apply make-object

(make-

self)

(define
(define
(define
(define
(define
(define
(define

(define

(map (lambda (obj) (instantiate obj)) ancestors)))
method! self instantiate (lambda (self) self))

who (make-generic-method))
imigrate! (make-generic-method))
emigrate! (make-generic-method))
describe (make-generic-method))
name (make-generic-method))
address (make-generic-method))
members (make-generic-method))

society

(let O
(define self (make-instance-object))
(define population ’())
(make-method! self imigrate!

(lambda (new-person)
(if (not (eq? new-person self))
(set! population (cons new-person population)))))

(make-method! self emigrate!

(lambda (person)
(if (not (eq? person self))
(set! population
(comlist:remove-if (lambda (member)
(eq? member person))
population)))))

(make-method! self describe

(lambda (self)
(map (lambda (person) (describe person)) population)))

(make-method! self who

(lambda (self) (map (lambda (person) (name person))
population)))

(make-method! self members (lambda (self) population))

Chapter 6: Other Packages 173

self))

(define (make-person %name %address)

(define self (make-instance-object society))
(make-method! self name (lambda (self) %name))
(make-method! self address (lambda (self) %address))
(make-method! self who (lambda (self) (name self)))
(make-method! self instantiate

(lambda (self)

(make-person (string-append (name self) "-son-of")
%address)))

(make-method! self describe

(lambda (self) (list (name self) (address self))))
(imigrate! self)
self)

6.1.15.1 Inverter Documentation

Inheritance:
<inverter>:: (<number> <description>)
Generic-methods

<inverter>: :value = <number>::value
<inverter>::set-value! = <number>::set-value!
<inverter>::describe = <description>::describe
<inverter>::help

<inverter>::invert

<inverter>::inverter?

6.1.15.2 Number Documention

Inheritance

<number>: : ()
Slots

<number>: :<x>
Generic Methods

<number>: :value
<number>: :set-value!

6.1.15.3 Inverter code
(require ’object)

(define value (make-generic-method (lambda (val) val)))
(define set-value! (make-generic-method))
(define invert (make-generic-method

(lambda (val)

Chapter 6: Other Packages 174

(if (number? val)
(/ 1 val)
(error "Method not supported:" wval)))))
(define noop (make-generic-method))
(define inverter? (make-generic-predicate))
(define describe (make-generic-method))
(define help (make-generic-method))

(define (make-number x)
(define self (make-object))
(make-method! self value (lambda (this) x))
(make-method! self set-value!
(lambda (this new-value) (set! x new-value)))
self)

(define (make-description str)
(define self (make-object))
(make-method! self describe (lambda (this) str))
(make-method! self help (lambda (this) "Help not available"))
self)

(define (make-inverter)
(let* ((self (make-object
(make-number 1)
(make-description "A number which can be inverted")))
(<value> (get-method self value)))
(make-method! self invert (lambda (self) (/ 1 (<value> self))))
(make-predicate! self inverter?)
(unmake-method! self help)
(make-method! self help
(lambda (self)
(display "Inverter Methods:") (newline)
(display " (value inverter) ==> n") (newline)))
self))

;555 Try it out
(define invert! (make-generic-method))
(define x (make-inverter))

(make-method! x invert! (lambda (x) (set-value! x (/ 1 (value x)))))

(value x) =1
(set-value! x 33) = undefined
(invert! x) = undefined
(value x) = 1/33
(unmake-method! x invert!) = undefined

Chapter 6: Other Packages 175

(invert! x) ERROR: Method not supported: x

6.1.16 Priority Queues

(require ’priority-queue)

make-heap pred<? Function
Returns a binary heap suitable which can be used for priority queue operations.

heap-length heap Function
Returns the number of elements in heap.

heap-insert! heap item Procedure
Inserts item into heap. item can be inserted multiple times. The value returned is
unspecified.

heap-extract-max! heap Function

Returns the item which is larger than all others according to the pred<? argument
to make-heap. If there are no items in heap, an error is signaled.

The algorithm for priority queues was taken from Introduction to Algorithms by T.
Cormen, C. Leiserson, R. Rivest. 1989 MIT Press.

6.1.17 Queues

(require ’queue)

A queue is a list where elements can be added to both the front and rear, and removed
from the front (i.e., they are what are often called dequeues). A queue may also be used
like a stack.

make-queue Function
Returns a new, empty queue.

queue? obj Function
Returns #t if obj is a queue.

queue-empty? g Function
Returns #t if the queue q is empty.

queue-push! g datum Procedure
Adds datum to the front of queue q.

Chapter 6: Other Packages 176

enquque! g datum Procedure
Adds datum to the rear of queue q.

All of the following functions raise an error if the queue q is empty.

queue-front q Function
Returns the datum at the front of the queue q.

queue-rear q Function
Returns the datum at the rear of the queue q.

queue-pop! q Prcoedure

dequeue! q Procedure
Both of these procedures remove and return the datum at the front of the queue.
queue-pop! is used to suggest that the queue is being used like a stack.

6.1.18 Records

(require ’record)

The Record package provides a facility for user to define their own record data types.

make-record-type type-name field-names Function
Returns a record-type descriptor, a value representing a new data type disjoint from
all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The field-
names argument is a list of symbols naming the fields of a record of the new type.
It is an error if the list contains any duplicates. It is unspecified how record-type
descriptors are represented.

record-constructor rtd [field-names] Function

Returns a procedure for constructing new members of the type represented by rtd.
The returned procedure accepts exactly as many arguments as there are symbols in the
given list, field-names; these are used, in order, as the initial values of those fields in a
new record, which is returned by the constructor procedure. The values of any fields
not named in that list are unspecified. The field-names argument defaults to the list
of field names in the call to make-record-type that created the type represented by
rtd; if the field-names argument is provided, it is an error if it contains any duplicates
or any symbols not in the default list.

record-predicate rtd Function
Returns a procedure for testing membership in the type represented by rtd. The
returned procedure accepts exactly one argument and returns a true value if the
argument is a member of the indicated record type; it returns a false value otherwise.

Chapter 6: Other Packages 177

record-accessor rtd field-name Function
Returns a procedure for reading the value of a particular field of a member of the type
represented by rtd. The returned procedure accepts exactly one argument which must
be a record of the appropriate type; it returns the current value of the field named by
the symbol field-name in that record. The symbol field-name must be a member of the
list of field-names in the call to make-record-type that created the type represented
by rtd.

record-modifier rtd field-name Function

Returns a procedure for writing the value of a particular field of a member of the type
represented by rtd. The returned procedure accepts exactly two arguments: first, a
record of the appropriate type, and second, an arbitrary Scheme value; it modifies
the field named by the symbol field-name in that record to contain the given value.
The returned value of the modifier procedure is unspecified. The symbol field-name
must be a member of the list of field-names in the call to make-record-type that
created the type represented by rtd.

In May of 1996, as a product of discussion on the rrrs-authors mailing list, I rewrote
‘record.scm’ to portably implement type disjointness for record data types.

As long as an implementation’s procedures are opaque and the record code is loaded
before other programs, this will give disjoint record types which are unforgeable and incor-
ruptible by R4RS procedures.

As a consequence, the procedures record?, record-type-descriptor, record-type-
name.and record-type-field-names are no longer supported.

6.2 Sorting and Searching

6.2.1 Common List Functions

(require ’common-list-functions)

The procedures below follow the Common LISP equivalents apart from optional argu-
ments in some cases.

6.2.1.1 List construction

make-list k Function

make-list k init Function
make-list creates and returns a list of k elements. If init is included, all elements in
the list are initialized to init.

Example:

Chapter 6: Other Packages 178

(make-list 3)

= (#<unspecified> #<unspecified> #<unspecified>)
(make-list 5 ’foo)

= (foo foo foo foo foo)

list* objl obj2 ... Function
Works like 1ist except that the cdr of the last pair is the last argument unless there
is only one argument, when the result is just that argument. Sometimes called consx.

E.g.:

(list* 1)
=1

(1ist* 1 2 3)
= (12.3)

(list* 1 2 ’(3 4))
= (1 23 4)

(1ist* args > ()
= (1list args)

copy-list Ist Function

copy-list makes a copy of Ist using new pairs and returns it. Only the top level
of the list is copied, i.e., pairs forming elements of the copied list remain eq? to the
corresponding elements of the original; the copy is, however, not eq? to the original,
but is equal? to it.

Example:

(copy-list ’(foo foo foo))
= (foo foo foo)
(define q ’(foo bar baz bang))
(define p q)
(eq? p Q)
= #t
(define r (copy-list q))
(eq? q 1)
= #f
(equal? q r)
= #t
(define bar ’(bar))
(eq? bar (car (copy-list (list bar ’fo00))))
= #t

6.2.1.2 Lists as sets

eqv? is used to test for membership by procedures which treat lists as sets.

adjoin el

Function

adjoin returns the adjoint of the element e and the list I. That is, if e is in I, adjoin
returns I, otherwise, it returns (cons e I).

Chapter 6: Other Packages 179

Example:
(adjoin ’baz ’(bar baz bang))
= (bar baz bang)
(adjoin ’foo ’(bar baz bang))
= (foo bar baz bang)

union I1 12 Function
union returns the combination of I1 and I2. Duplicates between 11 and I2 are culled.
Duplicates within 11 or within I2 may or may not be removed.

Example:
(union (1 23 4) (567 8))
= (87651234
(union (1 2 3 4) (3 45 6))
= (651234
intersection 11 12 Function
intersection returns all elements that are in both 11 and I2.
Example:
(intersection ’(1 2 3 4) (3 4 5 6))
= (3 4)
(intersection (1 2 3 4) (5 6 7 8))
= O
set-difference 11 12 Function
set-difference returns all elements that are in 11 but not in I2.
Example:
(set-difference (1 2 3 4) °(3 45 6))
= (1 2)
(set-difference (1 2 3 4) (1 23 4 5 6))
= O
member-if pred Ist Function

member-if returns Ist if (pred element) is #t for any element in Ist. Returns #f if
pred does not apply to any element in Ist.

Example:
(member-if vector? (1 2 3 4))
= #f
(member-if number? (1 2 3 4))
= (1234
some pred Istl Ist2 . .. Function

pred is a boolean function of as many arguments as there are list arguments to some
i.e., Ist plus any optional arguments. pred is applied to successive elements of the list
arguments in order. some returns #t as soon as one of these applications returns #t,
and is #£ if none returns #t. All the lists should have the same length.

Chapter 6: Other Packages 180

Example:

(some o0dd? (1 2 3 4))
= #t

(some odd? ’(2 4 6 8))
= #f

(some > °(2 3) ’(1 4))
= #f

every pred Istl Ist2 ... Function

every is analogous to some except it returns #t if every application of pred is #t and
#f otherwise.

Example:

(every even? ’(1 2 3 4))
= #f

(every even? ’(2 4 6 8))
= #t

(every > ’(2 3) ’(1 4))
= #f

notany pred Istl ... Function

notany is analogous to some but returns #t if no application of pred returns #t or #£
as soon as any one does.

notevery pred Istl ... Function

notevery is analogous to some but returns #t as soon as an application of pred returns
#f, and #f otherwise.

Example:

(notevery even? ’(1 2 3 4))
= #t

(notevery even? ’(2 4 6 8))
= #£f

list-of ?? predicate Function
Returns a predicate which returns true if its argument is a list every element of which

satisfies predicate.

list-of ?? predicate low-bound high-bound Function
low-bound and high-bound are non-negative integers. list-of?? returns a predicate
which returns true if its argument is a list of length between low-bound and high-
bound (inclusive); every element of which satisfies predicate.

Chapter 6: Other Packages 181

list-of ?? predicate bound Function
bound is an integer. If bound is negative, list-of?? returns a predicate which
returns true if its argument is a list of length greater than (- bound); every element
of which satisfies predicate. Otherwise, 1ist-of?7? returns a predicate which returns
true if its argument is a list of length less than or equal to bound; every element of
which satisfies predicate.

find-if pred Ist Function
find-if searches for the first element in Ist such that (pred element) returns #t. If
it finds any such element in Ist, element is returned. Otherwise, #f is returned.

Example:

(find-if number? ’(foo 1 bar 2))
= 1

(find-if number? ’(foo bar baz bang))
= #f

(find-if symbol? ’(1 2 foo bar))
= foo

remove elt Ist Function
remove removes all occurrences of elt from Ist using eqv? to test for equality and
returns everything that’s left. N.B.: other implementations (Chez, Scheme->C and

T, at least) use equal? as the equality test.

Example:

(remove 1 (1 21314 15))
= (2 345)

(remove ’foo ’(bar baz bang))
= (bar baz bang)

remove-if pred Ist Function
remove-if removes all elements from Ist where (pred element) is #t and returns

everything that’s left.
Example:

(remove-if number? (1 2 3 4))
= O

(remove-if even? (1 2 3 456 7 8))
= (1357)

remove-if-not pred Ist Function
remove-if-not removes all elements from Ist for which (pred element) is #f and

returns everything that’s left.

Example:

Chapter 6: Other Packages 182

(remove-if-not number? ’(foo bar baz))

= 0O
(remove-if-not odd? (1 2 3456 7 8))
= (1357
has-duplicates? Ist Function
returns #t if 2 members of Ist are equal?, #f otherwise.
Example:
(has-duplicates? (1 2 3 4))

= #f

(has-duplicates? ’(2 4 3 4))
= #t

The procedure remove-duplicates uses member (rather than memv).

remove-duplicates Ist Function
returns a copy of Ist with its duplicate members removed. Elements are considered
duplicate if they are equal?.

Example:

(remove-duplicates (1 2 3 4))
= (1234

(remove-duplicates ’(2 4 3 4))
= (2 4 3)

6.2.1.3 Lists as sequences

position obj Ist Function
position returns the 0-based position of obj in Ist, or #£ if obj does not occur in Ist.
Example:
(position ’foo ’(foo bar baz bang))
= 0
(position ’baz ’(foo bar baz bang))
= 2
(position ’oops ’(foo bar baz bang))
= #f
reduce p Ist Function

reduce combines all the elements of a sequence using a binary operation (the com-
bination is left-associative). For example, using +, one can add up all the elements.
reduce allows you to apply a function which accepts only two arguments to more than
2 objects. Functional programmers usually refer to this as foldl. collect:reduce

Chapter 6: Other Packages 183

(see Section 6.1.8 [Collections|, page 163) provides a version of collect generalized
to collections.

Example:

(reduce + (1 2 3 4))
= 10
(define (bad-sum . 1) (reduce + 1))
(bad-sum 1 2 3 4)
= (reduce + (1 2 3 4))
=+ + (+12) 3 4
= 10
(bad-sum)
= (reduce + (O))
= 0
(reduce string-append ’("hello" "cruel" "world"))
= (string-append (string-append "hello" "cruel") "world")
= "hellocruelworld"
(reduce anything ’())
= 0
(reduce anything ’(x))
= X

What follows is a rather non-standard implementation of reverse in terms of reduce
and a combinator elsewhere called C.

;3; Contributed by Jussi Piitulainen (jpiitula @ ling.helsinki.fi)

(define commute
(lambda (f)
(lambda (x y)
(fy x))))

(define reverse
(lambda (args)
(reduce-init (commute cons) ’() args)))

reduce-init p init Ist Function
reduce-init is the same as reduce, except that it implicitly inserts init at the start of
the list. reduce-init is preferred if you want to handle the null list, the one-element,
and lists with two or more elements consistently. It is common to use the operator’s
idempotent as the initializer. Functional programmers usually call this foldl.

Example:

(define (sum . 1) (reduce-init + 0 1))
(sum 1 2 3 4)
= (reduce-init + 0 (1 2 3 4))
=+ (+01)2) 3 4
= 10
(sum)
reduce-init + 0 *())

J

(
0

Chapter 6: Other Packages

(reduce-init string-append "@" ’("hello" "cruel" "world"))

(string-append (string-append (string-append "@" "hello")
"cruel")

"world")

= "@hellocruelworld"

184

Given a differentiation of 2 arguments, diff, the following will differentiate by any

number of variables.

(define (diff* exp . vars)

(reduce-init diff exp vars))

Example:

;55 Real-world example:

(define (insert 1 item)
(if (null? 1)
(1ist item)
(if (< (car 1) item)

(cons (car 1) (insert (cdr 1) item))

(cons item 1))))

(define (insertion-sort 1) (reduce-init insert ’() 1))

(insertion-sort (3 1 4 1 5)

last Ist n

last returns the last n elements of Ist. n must be a non-negative integer.

Example:

Insertion sort using reduce-init.

(reduce-init insert () (31 4 1 5))

(insert (insert (insert (imsert () 3) 1) 4) 1) 5)

(insert (insert (imsert (3)) 1) 4) 1) 5)
(insert (insert (1 3) 4) 1) 5)

= (insert

= (insert

= (insert

= (insert (imsert (1 3 4)
= (insert (1 1 3 4) 5)
= (11345)

(last ’(foo bar baz bang) 2)
= (baz bang)
(last °(1 2 3) 0)

= 0

butlast Ist n

butlast returns all but the last n elements of Ist.

Example:

(butlast ’(a b ¢ d) 3)

= (a)

(butlast ’(a b c d) 4)

1) 5)

Function

Function

Chapter 6: Other Packages 185

= 0O

last and butlast split a list into two parts when given identical arugments.
(last ’(a b cde) 2)

= (d e)
(butlast ’(a b cde) 2)
= (a b c)
nthcedr n Ist Function
nthcdr takes n cdrs of Ist and returns the result. Thus (nthcdr 3 Ist) = (cdddr
Ist)
Example:
(nthcdr 2 ’(a b ¢ d))
= (c d)
(nthedr 0 ’(a b ¢ d))
= (abcd
butnthedr n Ist Function
butnthcdr returns all but the nthedr n elements of Ist.
Example:
(butnthcdr 3 ’(a b c d))
= (a b c)
(butnthcdr 4 ’(a b c d))
= (abc d)

nthedr and butnthedr split a list into two parts when given identical arugments.

(nthedr 2 (a b c d e))
= (c d e)

(butnthecdr 2 ’(a b c d e))
= (a b)

6.2.1.4 Destructive list operations

These procedures may mutate the list they operate on, but any such mutation is un-
defined.

nconc args Procedure
nconc destructively concatenates its arguments. (Compare this with append, which
copies arguments rather than destroying them.) Sometimes called append! (see Sec-
tion 6.4.4 [Rev2 Procedures|, page 201).

Example: You want to find the subsets of a set. Here’s the obvious way:

(define (subsets set)
(if (null? set)
>(0O)

Chapter 6: Other Packages 186

(append (mapcar (lambda (sub) (cons (car set) sub))
(subsets (cdr set)))
(subsets (cdr set)))))

But that does way more consing than you need. Instead, you could replace the append
with nconc, since you don’t have any need for all the intermediate results.

Example:

(define x ’(a b ¢))
(define y ’(d e £))
(nconc x y)

= (abcdef)
X

= (abcde f)

nconc is the same as append! in ‘sc2.scm’.

nreverse Ist Procedure
nreverse reverses the order of elements in Ist by mutating cdrs of the list. Sometimes
called reverse!.
Example:

(define foo ’(a b c))
(nreverse foo)

= (c b a)
foo

= (a)

Some people have been confused about how to use nreverse, thinking that it doesn’t
return a value. It needs to be pointed out that

(set! 1st (nreverse 1lst))
is the proper usage, not
(nreverse 1lst)

The example should suffice to show why this is the case.

delete elt Ist Procedure
delete-if pred Ist Procedure
delete-if-not pred Ist Procedure

Destructive versions of remove remove-if, and remove-if-not.
Example:

(define 1st (list ’foo ’bar ’baz ’bang))
(delete ’foo 1st)

= (bar baz bang)
1st

= (foo bar baz bang)

(define 1st (list 1 2 3456 7 8 9))
(delete-if odd? 1st)
= (246 8)

Chapter 6: Other Packages 187

1st
= (1 246 8)

Some people have been confused about how to use delete, delete-if, and delete-
if, thinking that they don’t return a value. It needs to be pointed out that

(set! 1lst (delete el 1st))
is the proper usage, not
(delete el 1st)

The examples should suffice to show why this is the case.

6.2.1.5 Non-List functions

and? argl ... Function
and? checks to see if all its arguments are true. If they are, and? returns #t, otherwise,
#f. (In contrast to and, this is a function, so all arguments are always evaluated and
in an unspecified order.)

Example:
(and? 1 2 3)
= #t
(and #f 1 2)
= #f
or? argl ... Function

or? checks to see if any of its arguments are true. If any is true, or? returns #t, and
#f otherwise. (To or as and? is to and.)

Example:

(or? 1 2 #f)
= #t

(or? #f #f #f)
= #f

atom? object Function
Returns #t if object is not a pair and #f if it is pair. (Called atom in Common LISP.)

(atom? 1)
= #t

(atom? ’(1 2))
= #f

(atom? #(1 2)) ; dubious!
= #t

6.2.2 Tree operations

(require ’tree)

Chapter 6: Other Packages 188

These are operations that treat lists a representations of trees.

subst new old tree Function
subst new old tree equ? Function
substq new old tree Function
substv new old tree Function

subst makes a copy of tree, substituting new for every subtree or leaf of tree which is
equal? to old and returns a modified tree. The original tree is unchanged, but may
share parts with the result.

substq and substv are similar, but test against old using eq? and eqv? respectively.
If subst is called with a fourth argument, equ? is the equality predicate.

Examples:

(substq ’tempest ’hurricane ’(shakespeare wrote (the hurricane)))
= (shakespeare wrote (the tempest))
(substq ’foo ’() ’(shakespeare wrote (twelfth night)))
= (shakespeare wrote (twelfth night . foo) . foo)
(subst ’(a . cons) ’(old . pair)
>((old . spice) ((old . shoes) old . pair) (old . pair)))
= ((old . spice) ((old . shoes) a . coms) (a . couns))

copy-tree tree Function
Makes a copy of the nested list structure tree using new pairs and returns it. All
levels are copied, so that none of the pairs in the tree are eq? to the original ones —
only the leaves are.

Example:

(define bar ’(bar))

(copy-tree (list bar ’foo))
= ((bar) foo)

(eq? bar (car (copy-tree (list bar ’fo00))))
= #f

6.2.3 Chapter Ordering

(require ’chapter-order)

The ‘chap:’ functions deal with strings which are ordered like chapter numbers (or
letters) in a book. Each section of the string consists of consecutive numeric or consecutive
aphabetic characters of like case.

chap:string<? stringl string2 Function
Returns #t if the first non-matching run of alphabetic upper-case or the first non-
matching run of alphabetic lower-case or the first non-matching run of numeric char-
acters of stringl is string<? than the corresponding non-matching run of characters
of string?2.

Chapter 6: Other Packages 189

(chap:string<? "a.9" "a.10") = #t

(chap:string<? "4c" "4aa") = #t

(chap:string<? "Revised”{3.99}" "Revised~{4}") = #t
chap:string>? stringl string?2 Function
chap:string<=7 stringl string2 Function
chap:string>="7? stringl string2 Function

Implement the corresponding chapter-order predicates.

chap:next-string string Function
Returns the next string in the chapter order. If string has no alphabetic or numeric
characters, (string-append string "0") is returnd. The argument to chap:next-
string will always be chap:string<? than the result.

(chap:next-string "a.9") = "a.10"
(chap:next-string "4c") = "4q4"
(chap:next-string "4z") = "4aa"
(chap:next-string "Revised~{4}") = "Revised~{5}"

6.2.4 Sorting

(require ’sort)

Many Scheme systems provide some kind of sorting functions. They do not, however,
always provide the same sorting functions, and those that I have had the opportunity to

test provided inefficient ones (a common blunder is to use quicksort which does not perform
well).

Because sort and sort! are not in the standard, there is very little agreement about
what these functions look like. For example, Dybvig says that Chez Scheme provides

(merge predicate listl 1list2)
(merge! predicate listl 1list2)
(sort predicate list)
(sort! predicate list)

while MIT Scheme 7.1, following Common LISP, offers unstable
(sort list predicate)

TI PC Scheme offers
(sort! list/vector predicate?)

and Elk offers

(sort list/vector predicate?)
(sort! list/vector predicate?)

Here is a comprehensive catalogue of the variations I have found.
1. Both sort and sort! may be provided.
sort may be provided without sort!.

sort! may be provided without sort.

Chapter 6: Other Packages 190

Neither may be provided.

The sequence argument may be either a list or a vector.
The sequence argument may only be a list.

The sequence argument may only be a vector.

The comparison function may be expected to behave like <.

© o N o g

The comparison function may be expected to behave like <=.

10. The interface may be (sort predicate? sequence).

11. The interface may be (sort sequence predicate?).

12. The interface may be (sort sequence &optional (predicate? <)).
13. The sort may be stable.

14. The sort may be unstable.

All of this variation really does not help anybody. A nice simple merge sort is both
stable and fast (quite a lot faster than quick sort).

I am providing this source code with no restrictions at all on its use (but please re-
tain D.H.D.Warren’s credit for the original idea). You may have to rename some of these
functions in order to use them in a system which already provides incompatible or inferior
sorts. For each of the functions, only the top-level define needs to be edited to do that.

I could have given these functions names which would not clash with any Scheme that
I know of, but I would like to encourage implementors to converge on a single interface,
and this may serve as a hint. The argument order for all functions has been chosen to be
as close to Common LISP as made sense, in order to avoid NIH-itis.

Each of the five functions has a required last parameter which is a comparison function.
A comparison function f is a function of 2 arguments which acts like <. For example,

(not (£ x x))
(and (f xy) (£ y=2) = (£ x 2)
The standard functions <, >, char<?, char>?, char-ci<?, char-ci>?, string<?,
string>?, string-ci<?, and string-ci>? are suitable for use as comparison functions.
Think of (less? x y) as saying when x must not precede y.

sorted? sequence less? Function
Returns #t when the sequence argument is in non-decreasing order according to less?
(that is, there is no adjacent pair ... xy ... for which (less? y x)).

Returns #f when the sequence contains at least one out-of-order pair. It is an error
if the sequence is neither a list nor a vector.

merge list1 list2 less? Function
This merges two lists, producing a completely new list as result. I gave serious
consideration to producing a Common-LISP-compatible version. However, Common
LISP’s sort is our sort! (well, in fact Common LISP’s stable-sort is our sort!,
merge sort is fast as well as stable!) so adapting CL code to Scheme takes a bit of
work anyway. I did, however, appeal to CL to determine the order of the arguments.

Chapter 6: Other Packages 191

merge! list] list2 less? Procedure
Merges two lists, re-using the pairs of list1 and list2 to build the result. If the code
is compiled, and less? constructs no new pairs, no pairs at all will be allocated. The
first pair of the result will be either the first pair of list1 or the first pair of list2, but
you can’t predict which.

The code of merge and merge! could have been quite a bit simpler, but they have
been coded to reduce the amount of work done per iteration. (For example, we only
have one null? test per iteration.)

sort sequence less? Function
Accepts either a list or a vector, and returns a new sequence which is sorted. The new
sequence is the same type as the input. Always (sorted? (sort sequence less?)
less?). The original sequence is not altered in any way. The new sequence shares
its elements with the old one; no elements are copied.

sort! sequence less? Procedure
Returns its sorted result in the original boxes. If the original sequence is a list, no
new storage is allocated at all. If the original sequence is a vector, the sorted elements
are put back in the same vector.

Some people have been confused about how to use sort!, thinking that it doesn’t
return a value. It needs to be pointed out that

(set! slist (sort! slist <))
is the proper usage, not

(sort! slist <)

Note that these functions do not accept a ClL-style ‘:key’ argument. A simple device
for obtaining the same expressiveness is to define

(define (keyed less? key)
(lambda (x y) (less? (key x) (key y))))

and then, when you would have written

(sort a-sequence #’my-less :key #’my-key)
in Common LISP, just write

(sort! a-sequence (keyed my-less? my-key))

in Scheme.
6.2.5 Topological Sort

(require ’topological-sort) or (require ’tsort)

The algorithm is inspired by Cormen, Leiserson and Rivest (1990) Introduction to Algo-
rithms, chapter 23.

Chapter 6:

Other Packages

192

Function
Function

is the
exists

tsort dag pred
topological-sort dag pred
where
dag is a list of sublists. The car of each sublist is a vertex. The cdr
adjacency list of that vertex, i.e. a list of all vertices to which there
an edge from the car vertex.
pred is one of eq?, eqv?, equal?, =, char=7, char-ci=7, string="7, or string-

ci="7.

Sort the directed acyclic graph dag so that for every edge from vertex u to v, u will
come before v in the resulting list of vertices.

Time complexity: O (IVI] + |E|)

Example (from Cormen):

Prof. Bumstead topologically sorts his clothing when getting dressed.
The first argument to ‘tsort’ describes which garments he needs to put
on before others. (For example, Prof Bumstead needs to put on his shirt

before he puts on his tie or his belt.) ‘tsort’ gives the correct order of
dressing:

(require ’tsort)
(tsort ’((shirt tie belt)
(tie jacket)
(belt jacket)
(watch)
(pants shoes belt)
(undershorts pants shoes)
(socks shoes))
eq?)
=
(socks undershorts pants shoes watch shirt belt tie jacket)

6.2.6 String Search

(require ’string-search)

string-index string char
string-index-ci string char

Procedure
Procedure

Returns the index of the first occurence of char within string, or #£ if the string does
not contain a character char.

string-reverse-index string char
string-reverse-index-ci string char

Procedure
Procedure

Returns the index of the last occurence of char within string, or #£ if the string does
not contain a character char.

Chapter 6: Other Packages 193

substring? pattern string procedure

substring-ci? pattern string procedure
Searches string to see if some substring of string is equal to pattern. substring?
returns the index of the first character of the first substring of string that is equal to
pattern; or #f if string does not contain pattern.

(substring? "rat" "pirate") = 2
(substring? "rat" "outrage") = #f
(substring? "" any-string) = O

find-string-from-port? str in-port max-no-chars Procedure
Looks for a string str within the first max-no-chars chars of the input port in-port.

find-string-from-port? str in-port Procedure
When called with two arguments, the search span is limited by the end of the input
stream.

find-string-from-port? str in-port char Procedure

Searches up to the first occurrence of character char in str.

find-string-from-port? str in-port proc Procedure
Searches up to the first occurrence of the procedure proc returning non-false when
called with a character (from in-port) argument.

When the str is found, find-string-from-port? returns the number of characters
it has read from the port, and the port is set to read the first char after that (that is,
after the str) The function returns #f when the str isn’t found.

find-string-from-port? reads the port strictly sequentially, and does not perform
any buffering. So find-string-from-port? can be used even if the in-port is open
to a pipe or other communication channel.

string-subst txt old1 newl ... Function
Returns a copy of string txt with all occurrences of string old1 in txt replaced with
newl, old2 replaced with new2

6.2.7 Sequence Comparison

(require ’diff)
This package implements the algorithm:

If the items being sequenced are text lines, then the computed edit-list is equivalent to the
output of the diff utility program. If the items being sequenced are words, then it is like
the lesser known spiff program.

The values returned by diff:edit-length can be used to gauge the degree of match be-
tween two sequences.

I believe that this algorithm is currently the fastest for these tasks, but genome sequencing
applications fuel extensive research in this area.

Chapter 6: Other Packages 194

diff:longest-common-subsequence arrayl array2 =? Function

diff:longest-common-subsequence arrayl array?2 Function
arrayl and array2 are one-dimensional arrays. The procedure =7 is used to com-
pare sequence tokens for equality. =7 defaults to eqv?. diff:longest-common-
subsequence returns a one-dimensional array of length (quotient (- (+ lenl len2)
(fp:edit-length arrayl array2)) 2) holding the longest sequence common to both

arrays.
diff:edits arrayl array2 =7 Function
diff:edits arrayl array2 Function

arrayl and array2 are one-dimensional arrays. The procedure =7 is used to compare
sequence tokens for equality. =7 defaults to eqv?. diff:edits returns a list of
length (fp:edit-length arrayl array2) composed of a shortest sequence of edits
transformaing arrayl to array2.

Fach edit is a list of an integer and a symbol:
(j insert) Inserts (array-ref arrayl j) into the sequence.

(k delete) Deletes (array-ref array2 k) from the sequence.

diff:edit-length arrayl array2 =7 Function

diff:edit-length arrayl array2 Function
arrayl and array2 are one-dimensional arrays. The procedure =7 is used to compare
sequence tokens for equality. =7 defaults to eqv?. diff:edit-length returns the
length of the shortest sequence of edits transformaing arrayl to array2.

(diff:longest-common-subsequence ’#(f gh i e j ¢ k 1 m)
'#(f geh i jkpgqrlm)
= #(fghijk1lm

(diff:edit-length ’#(f gh i e j c k 1 m)
'#(f geh i jkpqgqrlm)
= 6

(pretty-print (diff:edits ’#(f gh i e j c k 1 m)

'#(f gehi jkpqrlm))
_|
((3 insert) ;
(4 delete) ;
(6 delete) ;
(7 insert) ;
(8 insert) ;
(9 insert)) ;

RoOT B oo

6.3 Procedures

Anything that doesn’t fall neatly into any of the other categories winds up here.

Chapter 6: Other Packages 195

6.3.1 Type Coercion

(require ’coerce)

type-of obj Function
Returns a symbol name for the type of obj.

coerce obj result-type Function
Converts and returns obj of type char, number, string, symbol, 1list, or vector to
result-type (which must be one of these symbols).

6.3.2 String-Case

(require ’string-case)

string-upcase str Procedure
string-downcase str Procedure
string-capitalize str Procedure

The obvious string conversion routines. These are non-destructive.

string-upcase! str Function
string-downcase! str Function
string-captialize! str Function

The destructive versions of the functions above.

string-ci->symbol str Function
Converts string str to a symbol having the same case as if the symbol had been read.

symbol-append objI ... Function
Converts objl ... to strings, appends them, and converts to a symbol which is
returned. Strings and numbers are converted to read’s symbol case; the case of
symbol characters is not changed. #f is converted to the empty string (symbol).

StudlyCapsExpand str delimiter Function

StudlyCapsExpand str Function
delimiter must be a string or character. If absent, delimiter defaults to ‘- .
StudlyCapsExpand returns a copy of str where delimiter is inserted between each
lower-case character immediately followed by an upper-case character; and between
two upper-case characters immediately followed by a lower-case character.

(StudlyCapsExpand "aX" " ") = "a X"
(StudlyCapsExpand "aX" "..") = "a..X"
(StudlyCapsExpand "AX") = "AX"
(StudlyCapsExpand "Ax") = "Ax"

Chapter 6: Other Packages 196

(StudlyCapsExpand "AXLE") = "AXLE"
(StudlyCapsExpand "aAXACz") = "a-AXA-Cz"
(StudlyCapsExpand "AaXACz") = "Aa-XA-Cz"
(StudlyCapsExpand "AAaXACz") = "A-Aa-XA-Cz"
(StudlyCapsExpand "AAaXAC") = "A-Aa-XAC"

6.3.3 String Ports

(require ’string-port)
call-with-output-string proc Procedure

proc must be a procedure of one argument. This procedure calls proc with one
argument: a (newly created) output port. When the function returns, the string
composed of the characters written into the port is returned.

call-with-input-string string proc Procedure
proc must be a procedure of one argument. This procedure calls proc with one
argument: an (newly created) input port from which string’s contents may be read.
When proc returns, the port is closed and the value yielded by the procedure proc is
returned.

6.3.4 Line I/0

(require ’line-i/o)

read-line Function

read-line port Function
Returns a string of the characters up to, but not including a newline or end of file,
updating port to point to the character following the newline. If no characters are
available, an end of file object is returned. The port argument may be omitted, in
which case it defaults to the value returned by current-input-port.

read-line! string Function

read-line! string port Function
Fills string with characters up to, but not including a newline or end of file, updating
the port to point to the last character read or following the newline if it was read. If
no characters are available, an end of file object is returned. If a newline or end of
file was found, the number of characters read is returned. Otherwise, #f is returned.
The port argument may be omitted, in which case it defaults to the value returned
by current-input-port.

Chapter 6: Other Packages 197

write-line string Function

write-line string port Function
Writes string followed by a newline to the given port and returns an unspecified value.
The Port argument may be omitted, in which case it defaults to the value returned
by current-input-port.

display-file path Function

display-file path port Function
Displays the contents of the file named by path to port. The port argument may be
ommited, in which case it defaults to the value returned by current-output-port.

6.3.5 Multi-Processing

(require ’process)

This module implements asynchronous (non-polled) time-sliced multi-processing in the
SCM Scheme implementation using procedures alarm and alarm-interrupt. Until this is
ported to another implementation, consider it an example of writing schedulers in Scheme.

add-process! proc Procedure
Adds proc, which must be a procedure (or continuation) capable of accepting accept-
ing one argument, to the process:queue. The value returned is unspecified. The
argument to proc should be ignored. If proc returns, the process is killed.

process:schedule! Procedure
Saves the current process on process:queue and runs the next process from
process:queue. The value returned is unspecified.

kill-process! Procedure
Kills the current process and runs the next process from process:queue. If there
are no more processes on process:queue, (slib:exit) is called (see Section 1.5.5
[System]|, page 9).

)

6.3.6 Metric Units

(require ’metric-units)
http://swissnet.ai.mit.edu/~jaffer/MIXF.html

Metric Interchange Format is a character string encoding for numerical values and units
which:

e is unambiguous in all locales;

e uses only [TOG] "Portable Character Set" characters matching "Basic Latin" charac-
ters in Plane 0 of the Universal Character Set [UCS];

e is transparent to [UTF-7] and [UTF-8] UCS transformation formats;

http://swissnet.ai.mit.edu/~jaffer/MIXF.html

Chapter 6: Other Packages 198

e is human readable and writable;

e is machine readable and writable;

e incorporates SI prefixes and units;

e incorporates [ISO 6093] numbers; and

e incorporates [IEC 60027-2] binary prefixes.

In the expression for the value of a quantity, the unit symbol is placed after the nu-
merical value. A dot (PERIOD, ‘.’) is placed between the numerical value and the unit
symbol.

Within a compound unit, each of the base and derived symbols can optionally have an
attached SI prefix.

Unit symbols formed from other unit symbols by multiplication are indicated by means
of a dot (PERIOD, ‘.”) placed between them.

Unit symbols formed from other unit symbols by division are indicated by means of a
SOLIDUS (‘/’) or negative exponents. The SOLIDUS must not be repeated in the same
compound unit unless contained within a parenthesized subexpression.

The grouping formed by a prefix symbol attached to a unit symbol constitutes a new
inseparable symbol (forming a multiple or submultiple of the unit concerned) which can be
raised to a positive or negative power and which can be combined with other unit symbols
to form compound unit symbols.

The grouping formed by surrounding compound unit symbols with parentheses (‘(’
and ‘)’) constitutes a new inseparable symbol which can be raised to a positive or negative
power and which can be combined with other unit symbols to form compound unit symbols.

Compound prefix symbols, that is, prefix symbols formed by the juxtaposition of two
or more prefix symbols, are not permitted.

Prefix symbols are not used with the time-related unit symbols min (minute), h (hour),
d (day). No prefix symbol may be used with dB (decibel). Only submultiple prefix symbols
may be used with the unit symbols L (liter), Np (neper), o (degree), oC (degree Celsius),
rad (radian), and sr (steradian). Submultiple prefix symbols may not be used with the unit
symbols t (metric ton), r (revolution), or Bd (baud).

A unit exponent follows the unit, separated by a CIRCUMFLEX (‘~’). Exponents may
be positive or negative. Fractional exponents must be parenthesized.

6.3.6.1 SI Prefixes

Factor Name Symbol | Factor Name Symbol
| ______
1e24 yotta Y | le-1 deci d
le21 zetta Z | le-2 centi c
le18 exa E | 1e-3 milli m
lelb peta P I le-6 micro u
lel2 tera T | 1e-9 nano n
1e9 giga G | le-12 pico p
le6 mega M | le-15 femto f
1e3 kilo k | le-18 atto a

Chapter 6: Other Packages 199

le2 hecto h | le-21 zepto z
lel deka da | 1le-24 yocto y

6.3.6.2 Binary Prefixes

These binary prefixes are valid only with the units B (byte) and bit. However, decimal
prefixes can also be used with bit; and decimal multiple (not submultiple) prefixes can also
be used with B (byte).

Factor (power-of-2) Name Symbol
1.152921504606846976e18 (2760) exbi Ei
1.125899906842624e15 (2750) pebi Pi
1.099511627776e12 (2740) tebi Ti
1.073741824e9 (2730) gibi Gi
1.048576e6 (2720) mebi Mi
1.024e3 (2710) kibi Ki

6.3.6.3 Unit Symbols

Type of Quantity Name Symbol Equivalent
time second s
time minute min = 60.s
time hour h = 60.min
time day d =24.h
frequency hertz Hz s™-1
signaling rate baud Bd s -1
length meter m
volume liter L dm~3
plane angle radian rad
solid angle steradian sT rad~2
plane angle revolution * r = 6.283185307179586.rad
plane angle degree * o = 2. 777777777777778e-3.r
information capacity bit bit
information capacity byte, octet B = 8.bit
mass gram g
mass ton t Mg
mass unified atomic mass unit u = 1.66053873e-27.kg
amount of substance mole mol
catalytic activity katal kat mol/s
thermodynamic temperature kelvin K
centigrade temperature degree Celsius oC
luminous intensity candela cd
luminous flux lumen Im cd.sr
illuminance lux 1x lm/m"2
force newton N m.kg.s"-2
pressure, stress pascal Pa N/m"~2
energy, work, heat joule J N.m

energy electronvolt eV = 1.602176462e-19.J

Chapter 6: Other Packages 200

power, radiant flux watt W J/s
logarithm of power ratio mneper Np

logarithm of power ratio decibel * dB = 0.1151293.Np
electric current ampere A

electric charge coulomb C s.A
electric potential, EMF volt v W/A
capacitance farad F c/v
electric resistance ohm Ohm V/A
electric conductance siemens S A/V
magnetic flux weber Wb V.s
magnetic flux density tesla T Wb/m~2
inductance henry H Wb/A
radionuclide activity becquerel Bq s™-1
absorbed dose energy gray Gy m~2.s87-2
dose equivalent sievert Sv m"2.s7-2

* The formulas are:
e r/rad = 8 * atan(1)
e o/r=1/360
e db/Np = In(10) / 20

si:conversion-factor to-unit from-unit Function
If the strings from-unit and to-unit express valid unit expressions for quantities of
the same unit-dimensions, then the value returned by si:conversion-factor will
be such that multiplying a numerical value expressed in from-units by the returned
conversion factor yields the numerical value expressed in to-units.

Otherwise, si:conversion-factor returns:

-3 if neither from-unit nor to-unit is a syntactically valid unit.
-2 if from-unit is not a syntactically valid unit.

-1 if to-unit is not a syntactically valid unit.

0 if linear conversion (by a factor) is not possible.
(si:conversion-factor "km/s" "m/s") = 0.001
(si:conversion-factor "N" "m/s") = 0
(si:conversion-factor "moC" "oC") = 1000
(si:conversion-factor "mK" "oC") = 0
(si:conversion-factor "rad" "o") = 0.0174533
(si:conversion-factor "K" "o") = 0
(si:conversion-factor "K" "K") = 1
(si:conversion-factor "oK" "oK") = -3
(si:conversion-factor "" "s/s") = 1
(si:conversion-factor "km/h" "mph") = -2

6.4 Standards Support

Chapter 6: Other Packages 201

6.4.

The

1 RnRS

r2rs, r3rs, r4rs, and rb5rs features attempt to provide procedures and macros to

bring a Scheme implementation to the desired version of Scheme.

r2rs

r3rs

rdrs

rbrs

6.4.

Feature
Requires features implementing procedures and optional procedures specified by Re-
vised™2 Report on the Algorithmic Language Scheme; namely rev3-procedures and
rev2-procedures.

Feature
Requires features implementing procedures and optional procedures specified by Re-
vised” 3 Report on the Algorithmic Language Scheme; namely rev3-procedures.

Note: SLIB already mandates the r3rs procedures which can be portably imple-
mented in r4rs implementations.

Feature
Requires features implementing procedures and optional procedures specified by
Revised~4 Report on the Algorithmic Language Scheme; namely rev4-optional-
procedures.

Feature
Requires features implementing procedures and optional procedures specified by Re-
vised™5 Report on the Algorithmic Language Scheme; namely values, macro, and
eval.

2 With-File

(require ’with-file)

with-input-from-file file thunk Function
with-output-to-file file thunk Function

6.4.

Description found in R4RS.

3 Transcripts

(require ’transcript)

transcript-on filename Function
transcript-off filename Function

Redefines read-char, read, write-char, write, display, and newline.

Chapter 6: Other Packages 202

6.4.4 Rev2 Procedures

(require ’rev2-procedures)

The procedures below were specified in the Revised™2 Report on Scheme. N.B.: The
symbols 1+ and -1+ are not R4RS syntax. Scheme->C, for instance, chokes on this module.

substring-move-left! stringl startl endl string2 start2 Procedure
substring-move-right! stringl startl endl string2 start2 Procedure
stringl and string2 must be a strings, and startl, start2 and endl must be exact
integers satisfying
0 <= startl <= endl <= (string-length stringl)
0 <= start2 <= endl - startl + start2 <= (string-length string2)

substring-move-left! and substring-move-right! store characters of stringl be-
ginning with index startl (inclusive) and ending with index endI (exclusive) into
string2 beginning with index start2 (inclusive).

substring-move-left! stores characters in time order of increasing indices. substring-
move-right! stores characters in time order of increasing indeces.

substring-fill! string start end char Procedure
Fills the elements start—end of string with the character char.

string-null? str Function
= (= 0 (string-length str))

append! pairl ... Procedure
Destructively appends its arguments. Equivalent to nconc.

1+ n Function
Adds 1 to n.

-1+ n Function
Subtracts 1 from n.

<? Function
<=7 Function
=7 Function
>7 Function
>=7 Function

These are equivalent to the procedures of the same name but without the trailing ‘7’.

Chapter 6: Other Packages 203

6.4.5 Rev4 Optional Procedures

(require ’rev4-optional-procedures)

For the specification of these optional procedures, See section “Standard procedures”
in Revised(4) Scheme.

list-tail I p Function
string->list s Function
list->string I Function
string-copy Function
string-fill! s obj Procedure
list->vector | Function
vector->list s Function
vector-fill! s obj Procedure

6.4.6 Multi-argument / and -

(require ’multiarg/and-)

For the specification of these optional forms, See section “Numerical operations” in
Revised(4) Scheme. The two-arg:* forms are only defined if the implementation does not
support the many-argument forms.

two-arg:/ nl n2 Function
The original two-argument version of /.

/ dividend divisorl . .. Function

two-arg:- nl n2 Function
The original two-argument version of -.

- minuend subtrahend]l . .. Function

Chapter 6: Other Packages 204

6.4.7 Multi-argument Apply

(require ’multiarg-apply)

For the specification of this optional form, See section “Control features” in Revised(4)
Scheme.

two-arg:apply proc | Function
The implementation’s native apply. Only defined for implementations which don’t
support the many-argument version.

apply proc argl . .. Function

6.4.8 Rationalize

(require ’rationalize)

The procedure rationalize is interesting because most programming languages do not
provide anything analogous to it. Thanks to Alan Bawden for contributing this algorithm.

rationalize x y Function
Computes the correct result for exact arguments (provided the implementation sup-
ports exact rational numbers of unlimited precision); and produces a reasonable an-
swer for inexact arguments when inexact arithmetic is implemented using floating-
point.

Rationalize has limited use in implementations lacking exact (non-integer) rational
numbers. The following procedures return a list of the numerator and denominator.

find-ratio x y Function
find-ratio returns the list of the simplest numerator and denominator whose quo-
tient differs from x by no more than y.

(find-ratio 3/97 .0001) = (3 97)
(find-ratio 3/97 .001) = (1 32)
find-ratio-between x y Function

find-ratio-between returns the list of the simplest numerator and denominator
between x and y.

(find-ratio-between 2/7 3/5) = (1 2)
(find-ratio-between -3/5 -2/7) = (-1 2)

Chapter 6: Other Packages 205

6.4.9 Promises

(require ’promise)

make-promise proc Function

Change occurrences of (delay expression) to (make-promise (lambda () expres-
sion)) and (define force promise:force) to implement promises if your implementation
doesn’t support them (see section “Control features” in Revised(4) Scheme).

6.4.10 Dynamic-Wind

(require ’dynamic-wind)

This facility is a generalization of Common LISP unwind-protect, designed to take
into account the fact that continuations produced by call-with-current-continuation
may be reentered.

dynamic-wind thunkl thunk2 thunk3 Procedure
The arguments thunkl, thunk2, and thunk3 must all be procedures of no arguments
(thunks).

dynamic-wind calls thunkl, thunk2, and then thunk3. The value returned by thunk2
is returned as the result of dynamic-wind. thunk3 is also called just before control
leaves the dynamic context of thunk2 by calling a continuation created outside that
context. Furthermore, thunkl is called before reentering the dynamic context of
thunk2 by calling a continuation created inside that context. (Control is inside the
context of thunk2 if thunk2 is on the current return stack).

Warning: There is no provision for dealing with errors or interrupts. If an error or
interrupt occurs while using dynamic-wind, the dynamic environment will be that in
effect at the time of the error or interrupt.

6.4.11 Eval

(require ’eval)

eval expression environment-specifier Function

Evaluates expression in the specified environment and returns its value. Expression
must be a valid Scheme expression represented as data, and environment-specifier
must be a value returned by one of the three procedures described below. Imple-
mentations may extend eval to allow non-expression programs (definitions) as the
first argument and to allow other values as environments, with the restriction that
eval is not allowed to create new bindings in the environments associated with null-
environment or scheme-report-environment.

Chapter 6: Other Packages 206

(eval ’(* 7 3) (scheme-report-environment 5))

= 21
(let ((f (eval ’(lambda (f x) (f x x))
(null-environment))))
(f + 10))
= 20
scheme-report-environment version Function
null-environment version Function
null-environment Function

Version must be an exact non-negative integer n corresponding to a version of one of
the Revised™n Reports on Scheme. Scheme-report-environment returns a specifier
for an environment that contains the set of bindings specified in the corresponding re-
port that the implementation supports. Null-environment returns a specifier for an
environment that contains only the (syntactic) bindings for all the syntactic keywords
defined in the given version of the report.

Not all versions may be available in all implementations at all times. However, an
implementation that conforms to version n of the Revised " n Reports on Scheme must
accept version n. An error is signalled if the specified version is not available.

The effect of assigning (through the use of eval) a variable bound in a scheme-
report-environment (for example car) is unspecified. Thus the environments spec-
ified by scheme-report-environment may be immutable.

interaction-environment Function
This optional procedure returns a specifier for the environment that contains
implementation-defined bindings, typically a superset of those listed in the re-
port. The intent is that this procedure will return the environment in which the
implementation would evaluate expressions dynamically typed by the user.

Here are some more eval examples:

(require ’eval)

= #<unspecified>

(define car ’volvo)

= #<unspecified>

car

= volvo

(eval ’car (interaction-environment))

= volvo

(eval ’car (scheme-report-environment 5))

= #<primitive-procedure car>

(eval ’(eval ’car (interaction-environment))
(scheme-report-environment 5))

= volvo

(eval ’(eval ’(set! car ’buick) (interaction-environment))
(scheme-report-environment 5))

= #<unspecified>

Chapter 6: Other Packages 207

car

= buick

(eval ’car (scheme-report-environment 5))

= #<primitive-procedure car>

(eval ’(eval ’car (interaction-environment))
(scheme-report-environment 5))

= buick

6.4.12 Values

(require ’values)

values obj ... Function
values takes any number of arguments, and passes (returns) them to its continuation.

call-with-values thunk proc Function
thunk must be a procedure of no arguments, and proc must be a procedure. call-
with-values calls thunk with a continuation that, when passed some values, calls
proc with those values as arguments.

Except for continuations created by the call-with-values procedure, all continua-
tions take exactly one value, as now; the effect of passing no value or more than one
value to continuations that were not created by the call-with-values procedure is
unspecified.

6.4.13 SRFI

(require ’srfi)

Implements Scheme Request For Implementation (SRFI) as described at http://srfi.schemers.org/

The Copyright terms of each SRFI states:
"However, this document itself may not be modified in any way, ..."

Therefore, the specification of SRFI constructs must not be quoted without including the
complete SRFI document containing discussion and a sample implementation program.

cond-expand <clausel> <clause2> . .. Macro
Syntax: Each <clause> should be of the form

(<feature> <expressionl> ...)

where <feature> is a boolean expression composed of symbols and ‘and’, ‘or’, and
‘not’ of boolean expressions. The last <clause> may be an “else clause,” which has
the form

(else <expressionl> <expression2> ...).

The first clause whose feature expression is satisfied is expanded. If no feature ex-
pression is satisfied and there is no else clause, an error is signaled.

http://srfi.schemers.org/
http://srfi.schemers.org/

Chapter 6: Other Packages 208

SLIB cond-expand is an extension of SRFI-0, http://srfi.schemers.org/srfi-0/srfi-0.html

6.4.13.1 SRFI-1

(require ’srfi-1)

Implements the SRFI-1 list-processing library as described at http://srfi.schemers.org/srfi-1/srfi-

Constructors

xcons d a Function
(define (xcons d a) (cons a d)).

list-tabulate len proc Function
Returns a list of length len. Element i is (proc 1) for 0 <= i < len.

cons* objl obj2 Function
iota count start step Function
iota count start Function
iota count Function
Returns a list of count numbers: (start, start+step, .. ., start+(count-1)*step).
circular-list objl obj2 ... Function

Returns a circular list of obj1, obj2,

Predicates

proper-list? obj Function
circular-list? x Function
dotted-list? obj Function
null-list? obj Function
not-pair? obj Function

list= =pred Iist . .. Function

http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-1/srfi-1.html

Chapter 6: Other Packages

Selectors

first pair
fifth obj
sixth obj
seventh obj
eighth obj
ninth obj
tenth obj

car+cdr pair

take Ist k
drop Ist k

take-right Ist k
split-at Ist k

last Ist
(car (last-pair lst))

Miscellaneous

length+ obj

concatenate Iists
concatenate! Ilists

reverse! Ist

append-reverse rev-head tail
append-reverse! rev-head tail

zip list1 list2 . ..

unzipl Ist
unzip2 Ist
unzip3 Ist
unzip4 Ist
unzip5b Ist

count pred list] list2 . ..

Fold and Unfold

209

Function
Function
Function
Function
Function
Function
Function

Function

Function
Function

Function

Function

Function

Function

Function
Function

Function

Function
Function

Function

Function
Function
Function
Function
Function

Function

Chapter 6: Other Packages 210

Filtering and Partitioning

Searching

find pred Iist Function
find-tail pred list Function
member obj list pred Function
member obj list Function

member returns the first sublist of list whose car is obj, where the sublists of list are
the non-empty lists returned by (list-tail Iist k) for k less than the length of list.
If obj does not occur in list, then #f (not the empty list) is returned. The procedure
pred is used for testing equality. If pred is not provided, ‘equal?’ is used.

Deleting

Association lists

assoc obj alist pred Function
assoc obj alist Function
alist (for “association list”) must be a list of pairs. These procedures find the first
pair in alist whose car field is obj, and returns that pair. If no pair in alist has obj
as its car, then #f (not the empty list) is returned. The procedure pred is used for
testing equality. If pred is not provided, ‘equal?’ is used.

Set operations

6.5 Session Support

6.5.1 Repl

(require ’repl)

Here is a read-eval-print-loop which, given an eval, evaluates forms.

repl:top-level repl:eval Procedure
reads, repl:evals and writes expressions from (current-input-port) to (current-
output-port) until an end-of-file is encountered. load, slib:eval, slib:error, and
repl:quit dynamically bound during repl:top-level.

Chapter 6: Other Packages 211

repl:quit Procedure
Exits from the invocation of repl:top-level.

The repl: procedures establish, as much as is possible to do portably, a top level envi-
ronment supporting macros. repl:top-level uses dynamic-wind to catch error conditions
and interrupts. If your implementation supports this you are all set.

Otherwise, if there is some way your implementation can catch error conditions and
interrupts, then have them call slib:error. It will display its arguments and reenter
repl:top-level. slib:error dynamically bound by repl:top-level.

To have your top level loop always use macros, add any interrupt catching lines and
the following lines to your Scheme init file:
(require ’macro)
(require ’repl)
(repl:top-level macro:eval)

6.5.2 Quick Print

(require ’gp)

When displaying error messages and warnings, it is paramount that the output generated
for circular lists and large data structures be limited. This section supplies a procedure to
do this. It could be much improved.

Notice that the neccessity for truncating output eliminates Common-Lisp’s Sec-
tion 3.2 [Format|, page 39 from consideration; even when variables *print-
level* and *print-levelx are set, huge strings and bit-vectors are not lim-

ited.
qp argl ... Procedure
gpn argl ... Procedure
qpr argl ... Procedure
gp writes its arguments, separated by spaces, to (current-output-port). gp com-
presses printing by substituting ‘. . .’ for substructure it does not have sufficient room

to print. gpn is like gp but outputs a newline before returning. qpr is like gpn except
that it returns its last argument.

qp-width Variable
qp-widthx is the largest number of characters that qp should use.

6.5.3 Debug

(require ’debug)
Requiring debug automatically requires trace and break.

An application with its own datatypes may want to substitute its own printer for gp. This
example shows how to do this:

Chapter 6: Other Packages 212

(define gpn (lambda args) ...)
(provide ’qgp)
(require ’debug)

trace-all file . .. Procedure
Traces (see Section 6.5.5 [Tracel|, page 211) all procedures defined at
top-level in ‘file’ track-all file ...
Tracks (see Section 6.5.5 [Trace|, page 211) all procedures defined at
top-level in ‘file’ stack-all file ...
Stacks (see Section 6.5.5 [Trace|, page 211) all procedures defined at top-level in
‘file’
break-all file . .. Procedure

Breakpoints (see Section 6.5.4 [Breakpoints|, page 210) all procedures defined at
top-level in ‘file’

6.5.4 Breakpoints

(require ’break)

init-debug Function
If your Scheme implementation does not support break or abort, a message will
appear when you (require ’break) or (require ’debug) telling you to type (init-
debug). This is in order to establish a top-level continuation. Typing (init-debug)
at top level sets up a continuation for break.

breakpoint argl ... Function
Returns from the top level continuation and pushes the continuation from which it
was called on a continuation stack.

continue Function
Pops the topmost continuation off of the continuation stack and returns an unspecified
value to it.
continue argl ... Function
Pops the topmost continuation off of the continuation stack and returns argl ... to
it.
break procl ... Macro
Redefines the top-level named procedures given as arguments so that
breakpoint is called before calling procl break

With no arguments, makes sure that all the currently broken identifiers are broken
(even if those identifiers have been redefined) and returns a list of the broken identi-
fiers.

Chapter 6: Other Packages 213

unbreak procl ... Macro
Turns breakpoints off for its arguments. unbreak
With no arguments, unbreaks all currently broken identifiers and returns a list of
these formerly broken identifiers.

These are procedures for breaking. If defmacros are not natively supported by your
implementation, these might be more convenient to use.

breakf proc Function
breakf proc name Function
To break, type

(set! symbol (breakf symbol))

or
(set! symbol (breakf symbol ’symbol))
or
(define symbol (breakf function))
or
(define symbol (breakf function ’symbol))
unbreakf proc Function

To unbreak, type
(set! symbol (unbreakf symbol))

6.5.5 Tracing

(require ’trace)

This feature provides three ways to monitor procedure invocations:
stack Pushes the procedure-name when the procedure is called; pops when it returns.

track Pushes the procedure-name and arguments when the procedure is called; pops
when it returns.

Y

trace Pushes the procedure-name and prints ‘CALL procedure-name argl ...’ when
the procdure is called; pops and prints ‘RETN procedure-name value’ when the
procedure returns.

debug:max-count Variable
If a traced procedure calls itself or untraced procedures which call it, stack, track,
and trace will limit the number of stack pushes to debug:max-count.

print-call-stack Function
print-call-stack port Function
Prints the call-stack to port or the current-error-port.

Chapter 6: Other Packages 214

trace procl ... Macro
Traces the top-level named procedures given as arguments. trace
With no arguments, makes sure that all the currently traced identifiers are traced
(even if those identifiers have been redefined) and returns a list of the traced identifiers.

track procl ... Macro
Traces the top-level named procedures given as arguments. track
With no arguments, makes sure that all the currently tracked identifiers are tracked
(even if those identifiers have been redefined) and returns a list of the tracked iden-
tifiers.

stack procl ... Macro
Traces the top-level named procedures given as arguments. stack
With no arguments, makes sure that all the currently stacked identifiers are stacked
(even if those identifiers have been redefined) and returns a list of the stacked iden-
tifiers.

untrace procl ... Macro
Turns tracing, tracking, and off for its arguments. untrace
With no arguments, untraces all currently traced identifiers and returns a list of these
formerly traced identifiers.

untrack procl ... Macro
Turns tracing, tracking, and off for its arguments. untrack
With no arguments, untracks all currently tracked identifiers and returns a list of
these formerly tracked identifiers.

unstack procl ... Macro
Turns tracing, stacking, and off for its arguments. unstack
With no arguments, unstacks all currently stacked identifiers and returns a list of
these formerly stacked identifiers.

These are procedures for tracing. If defmacros are not natively supported by your
implementation, these might be more convenient to use.

tracef proc Function
tracef proc name Function
To trace, type

(set! symbol (tracef symbol))

or

(set! symbol (tracef symbol ’symbol))
or

(define symbol (tracef function))
or

(define symbol (tracef function ’symbol))

Chapter 6: Other Packages 215

untracef proc Function
Removes tracing, tracking, or stacking for proc. To untrace, type

(set! symbol (untracef symbol))

6.5.6 System Interface

If (provided? ’getenv):

getenv name Function
Looks up name, a string, in the program environment. If name is found a string of
its value is returned. Otherwise, #f is returned.

If (provided? ’system):

system command-string Function
Executes the command-string on the computer and returns the integer status code.

If system is provided by the Scheme implementation, the net-clients package provides in-
terfaces to common network client programs like FTP, mail, and Netscape.

(require ’net-clients)

call-with-tmpnam proc Function
call-with-tmpnam proc k Function
Calls proc with k arguments, strings returned by successive calls to tmpnam. If proc
returns, then any files named by the arguments to proc are deleted automatically and
the value(s) yielded by the proc is(are) returned. k may be ommited, in which case
it defaults to 1.

user-email-address Function
user-email-address returns a string of the form ‘username@hostname’. If this e-
mail address cannot be obtained, #f is returned.

current-directory Function
current-directory returns a string containing the absolute file name representing
the current working directory. If this string cannot be obtained, #f is returned.

If current-directory cannot be supported by the platform, the value of current-
directory is #f.

make-directory name Function
Creates a sub-directory name of the current-directory. If successful, make-directory
returns #t; otherwise #f.

null-directory? file-name Function
Returns #t if changing directory to file-name makes the current working directory
the same as it is before changing directory; otherwise returns #f.

Chapter 6: Other Packages 216

absolute-path? file-name Function
Returns #t if file-name is a fully specified pathname (does not depend on the current
working directory); otherwise returns #f.

glob-pattern? str Function
Returns #t if the string str contains characters used for specifying glob patterns,
namely ‘*’, ‘?’ or ‘[’

parse-ftp-address uri Function
Returns a list of the decoded FTP uri; or #f if indecipherable. FTP Uniform Resource
Locator, ange-ftp, and getit formats are handled. The returned list has four elements
which are strings or #f:

0. username
1. password
2. remote-site
3

. remote-directory

path->uri path Function
Returns a URI-string for path on the local host.

browse-url-netscape url Function
If a ‘netscape’ browser is running, browse-url-netscape causes the browser to
display the page specified by string url and returns #t.

If the browser is not running, browse-url-netscape runs ‘netscape’ with the argu-
ment url. If the browser starts as a background job, browse-url-netscape returns
#t immediately; if the browser starts as a foreground job, then browse-url-netscape
returns #t when the browser exits; otherwise it returns #f.

6.6 Extra-SLIB Packages

Several Scheme packages have been written using SLIB. There are several reasons why
a package might not be included in the SLIB distribution:

e Because it requires special hardware or software which is not universal.
e Because it is large and of limited interest to most Scheme users.

e Because it has copying terms different enough from the other SLIB packages that its
inclusion would cause confusion.

e Because it is an application program, rather than a library module.
e Because I have been too busy to integrate it.
Once an optional package is installed (and an entry added to *catalog#, the require

mechanism allows it to be called up and used as easily as any other SLIB package. Some
optional packages (for which *catalogx already has entries) available from SLIB sites are:

Chapter 6: Other Packages 217

SLIB-PSD is a portable debugger for Scheme (requires emacs editor).
http://swissnet.ai.mit.edu/ftpdir/scm/slib-psd1-3.tar.gz
swissnet.ai.mit.edu:/pub/scm/slib-psd1-3.tar.gz
ftp.maths.tcd.ie:pub/bosullvn/jacal /slib-psd1-3.tar.gz
ftp.cs.indiana.edu: /pub/scheme-repository /utl/slib-psd1-3.tar.gz

With PSD, you can run a Scheme program in an Emacs buffer, set breakpoints,
single step evaluation and access and modify the program’s variables. It works
by instrumenting the original source code, so it should run with any R4RS
compliant Scheme. It has been tested with SCM, Elk 1.5, and the sci inter-
preter in the Scheme->C system, but should work with other Schemes with a
minimal amount of porting, if at all. Includes documentation and user’s man-
ual. Written by Pertti Kellom\"aki, pk @ cs.tut.fi. The Lisp Pointers article
describing PSD (Lisp Pointers VI(1):15-23, January-March 1993) is available
as http://www.cs.tut.fi/staff/pk/scheme/psd/article/article.html

SCHELOG
is an embedding of Prolog in Scheme. http://www.cs.rice.edu/CS/PLT /packages/schelog/

JFILTER is a Scheme program which converts text among the JIS, EUC, and Shift-JIS
Japanese character sets. http://www.sci.toyama-u.ac.jp/~iwao/Scheme/Jfilter /index.html

Chapter 7: About SLIB 218

7 About SLIB

7.1 Installation

There are four parts to installation:
Unpack the SLIB distribution.
Configure the Scheme implementation(s) to locate the SLIB directory.

Arrange for Scheme implementation to load its SLIB initialization file.

Build the SLIB catalog for the Scheme implementation.

7.1.1 Unpacking the SLIB Distribution

If the SLIB distribution is a Linux RPM, it will create the SLIB directory ‘/usr/share/slib’.

If the SLIB distribution is a ZIP file, unzip the distribution to create the SLIB directory.
Locate this ‘s1ib’ directory either in your home directory (if only you will use this SLIB
installation); or put it in a location where libraries reside on your system. On unix systems
this might be ‘/usr/share/slib’, ‘/usr/local/lib/slib’, or ‘/usr/lib/slib’. If you
know where SLIB should go on other platforms, please inform agj @ alum.mit.edu.

7.1.2 Configure Scheme Implementation to Locate SLIB

If the Scheme implementation supports getenv, then the value of the shell environment
variable SCHEME_LIBRARY_PATH will be used for (library-vicinity) if it is defined.
Currently, Chez, Elk, MITScheme, scheme->c, VSCM, and SCM support getenv. Scheme48
supports getenv but does not use it for determining library-vicinity. (That is done from
the Makefile.)

The (library-vicinity) can also be specified from the SLIB initialization file or by
implementation-specific means.

7.1.3 Loading SLIB Initialization File

Check the manifest in ‘README’ to find a configuration file for your Scheme implemen-
tation. Initialization files for most IEEE P1178 compliant Scheme Implementations are
included with this distribution.

You should check the definitions of software-type, scheme-implementation-version,

implementation-vicinity, and library-vicinity in the initialization file. There are
comments in the file for how to configure it.

Once this is done, modify the startup file for your Scheme implementation to load this
initialization file.

Chapter 7: About SLIB 219

7.1.4 Build New SLIB Catalog for Implementation

When SLIB is first used from an implementation, a file named ‘slibcat’ is written to
the implementation-vicinity for that implementation. Because users may lack permis-
sion to write in implementation-vicinity, it is good practice to build the new catalog
when installing SLIB.

To build (or rebuild) the catalog, start the Scheme implementation (with SLIB), then:
(require ’new-catalog)
The catalog also supports color-name dictionaries. With an SLIB-installed scheme
implementation, type:

(require ’color-names)
(make-slib-color-name-db)
(require ’new-catalog)
(slib:exit)

7.1.5 Implementation-specific Instructions

Multiple implementations of Scheme can all use the same SLIB directory. Simply
configure each implementation’s initialization file as outlined above.

SCM Implementation
The SCM implementation does not require any initialization file as SLIB support is
already built into SCM. See the documentation with SCM for installation instructions.

VSCM Implementation
From: Matthias Blume <blume @ cs.Princeton. EDU>
Date: Tue, 1 Mar 1994 11:42:31 -0500

Disclaimer: The code below is only a quick hack. If I find some time to spare I might
get around to make some more things work.
You have to provide ‘vscm.init’ as an explicit command line argument. Since this
is not very nice I would recommend the following installation procedure:

1. run scheme

2. (load "vscm.init")

3. (slib:dump "dumpfile")

4. mv dumpfile place-where-vscm-standard-bootfile-resides e.g. mv dumpfile /usr/local/vscm/lib /s
boot (In this case vscm should have been compiled with flag -DDEFAULT_BOOTFILE=""/usr/lo
boot"’. See Makefile (definition of DDP) for details.)

Scheme48 Implementation
To make a Scheme48 image for an installation under <prefix>,
1. cd to the SLIB directory
2. type make prefix=<prefix> s1ib48.

3. To install the image, type make prefix=<prefix> install48. This will also
create a shell script with the name s1ib48 which will invoke the saved image.

Chapter 7: About SLIB 220

PLT Scheme Implementation
DrScheme Implementation
MzScheme Implementation

The ‘init.ss’ file in the _slibinit_ collection is an SLIB initialization file.

To use SLIB in MzScheme, set the SCHEME_LIBRARY_PATH environment variable
to the installed SLIB location; then invoke MzScheme thus:

mzscheme -L init.ss slibinit

MIT Scheme Implementation
scheme -load ${SCHEME_LIBRARY_PATH}mitscheme.init

Guile Implementation
guile -1 ${SCHEME_LIBRARY_PATH}guile.init

7.2 Porting

If there is no initialization file for your Scheme implementation, you will have to create
one. Your Scheme implementation must be largely compliant with IEEE Std 1178-1990,
Revised™4 Report on the Algorithmic Language Scheme, or Revised™5 Report on the Algo-
rithmic Language Scheme in order to support SLIB.!

‘Template.scm’ is an example configuration file. The comments inside will direct you
on how to customize it to reflect your system. Give your new initialization file the imple-
mentation’s name with ‘.init’ appended. For instance, if you were porting foo-scheme
then the initialization file might be called ‘foo.init’.

Your customized version should then be loaded as part of your scheme implementation’s
initialization. It will load ‘require.scm’ from the library; this will allow the use of provide,
provided?, and require along with the vicinity functions (these functions are documented
in the section Section 1.5.1 [Require|, page 4). The rest of the library will then be accessible
in a system independent fashion.

Please mail new working configuration files to agj @ alum.mit.edu so that they can
be included in the SLIB distribution.

7.3 Coding Guidelines

All library packages are written in IEEE P1178 Scheme and assume that a configuration
file and ‘require.scm’ package have already been loaded. Other versions of Scheme can be
supported in library packages as well by using, for example, (provided? ’rev3-report)
or (require ’rev3-report) (see Section 1.5.1 [Require], page 4).

L If you are porting a Revised~3 Report on the Algorithmic Language Scheme imple-
mentation, then you will need to finish writing ‘sc4sc3.scm’ and load it from your
initialization file.

Chapter 7: About SLIB 221

The module name and ‘:’ should prefix each symbol defined in the package. Definitions
for external use should then be exported by having (define foo module-name:fo0).

Code submitted for inclusion in SLIB should not duplicate routines already in SLIB
files. Use require to force those library routines to be used by your package. Care should
be taken that there are no circularities in the requires and loads between the library
packages.

Documentation should be provided in Emacs Texinfo format if possible, But documen-
tation must be provided.

Your package will be released sooner with SLIB if you send me a file which tests your
code. Please run this test before you send me the code!

7.3.1 Modifications

Please document your changes. A line or two for ‘ChangeLog’ is sufficient for simple
fixes or extensions. Look at the format of ‘ChangeLog’ to see what information is desired.
Please send me diff files from the latest SLIB distribution (remember to send diffs of
‘slib.texi’ and ‘ChangeLog’). This makes for less email traffic and makes it easier for
me to integrate when more than one person is changing a file (this happens a lot with
‘slib.texi’ and ‘*.init’ files).

If someone else wrote a package you want to significantly modify, please try to contact
the author, who may be working on a new version. This will insure against wasting effort
on obsolete versions.

Please do not reformat the source code with your favorite beautifier, make 10 fixes,
and send me the resulting source code. I do not have the time to fish through 10000 diffs
to find your 10 real fixes.

7.4 Copyrights

This section has instructions for SLIB authors regarding copyrights.

Fach package in SLIB must either be in the public domain, or come with a statement of
terms permitting users to copy, redistribute and modify it. The comments at the beginning
of ‘require.scm’ and ‘macwork.scm’ illustrate copyright and appropriate terms.

If your code or changes amount to less than about 10 lines, you do not need to add
your copyright or send a disclaimer.

7.4.1 Putting code into the Public Domain

In order to put code in the public domain you should sign a copyright disclaimer and
send it to the SLIB maintainer. Contact agj @ alum.mit.edu for the address to mail the
disclaimer to.

I, name, hereby affirm that I have placed the software package name in the
public domain.

Chapter 7: About SLIB 222

I affirm that I am the sole author and sole copyright holder for the software
package, that I have the right to place this software package in the public
domain, and that I will do nothing to undermine this status in the future.

signature and date

This wording assumes that you are the sole author. If you are not the sole author, the
wording needs to be different. If you don’t want to be bothered with sending a letter every
time you release or modify a module, make your letter say that it also applies to your future
revisions of that module.

Make sure no employer has any claim to the copyright on the work you are submitting.
If there is any doubt, create a copyright disclaimer and have your employer sign it. Mail
the signed disclaimer to the SLIB maintainer. Contact agj @ alum.mit.edu for the address
to mail the disclaimer to. An example disclaimer follows.

7.4.2 Explicit copying terms

If you submit more than about 10 lines of code which you are not placing into the Public
Domain (by sending me a disclaimer) you need to:

e Arrange that your name appears in a copyright line for the appropriate year. Multiple
copyright lines are acceptable.

e With your copyright line, specify any terms you require to be different from those
already in the file.

e Make sure no employer has any claim to the copyright on the work you are submitting.
If there is any doubt, create a copyright disclaimer and have your employer sign it.
Mail the signed disclaim to the SLIB maintainer. Contact agj @ alum.mit.edu for the
address to mail the disclaimer to.

7.4.3 Example: Company Copyright Disclaimer

This disclaimer should be signed by a vice president or general manager of the company.
If you can’t get at them, anyone else authorized to license out software produced there will
do. Here is a sample wording:

employer Corporation hereby disclaims all copyright interest in the program
program written by name.

employer Corporation affirms that it has no other intellectual property interest
that would undermine this release, and will do nothing to undermine it in the
future.

signature and date,
name, title, employer Corporation

Procedure and Macro Index

Procedure and Macro Index

This is an alphabetical list of all the procedures and macros in SLIB.

S 205
Sl 204
[205
S e 204
S e 85
>

> 204
> 204
<

D 204
Qe 204

absolute-path?............................ 218
AC32 . 158
ACBA . . 157
add-command-tables........................ 141
add-domainiii 142
add-process! 199
add-setter 30
adjoin. ... 180
adjoin-parameters!................ 55
Alarm. ..ot 199
alarm-interrupt........................... 199
alist->wt-tree........... ... 151

alist-associator.......................... 163

alist-for-each............
alist-inquirer............................
alist-map,
alist-remover,

ANA T .

AN T |

append-Treverseouiniiian...

append-reverse!

array-align................
array-copy! ...
array-dimensions..........................
array-for-each............................
array-in-bounds?.............
array-index-map!................
array-indexes
array-map!
array-rank
array-ref

array-set! il

223

Procedure and Macro Index

B

batch:call-with-output-script............. 60
batch:command 60
batch:comment 61
batch:delete-file.......................... 61
batch:initialize!.......... 60
batch:lines->file.......................... 61
batch:rename-file.......................... 61
batch:run-script........................... 61
batch:try-chopped-command 60
batch:try-command.......................... 60
bit-extract 83
bit-field 83
bit-reverse 84
bitwise-if i 82
bitwise:delaminate......................... 84
bitwise:laminate................... 84
blackbody-spectrum........................ 108
booleans->integer.......................... 84
break....... 214
break-allt 214
breakf...... 215
breakpointiiiiiiiii. 214
browse...... 149
browse-url-netscape....................... 218
butlast.......... i 186
butnthedr i 187
byte-ref 163
byte-set! 164
bytes. ..o 164
bytes->list i 164
bytes-length 164

C

call-with-dynamic-binding 169
call-with-input-string 198
call-with-open-ports........................ 9
call-with-output-string 198
call-with-tmpnam.......................... 217
call-with-values.......................... 209
capture-syntactic-environment............. 22
car+cdr. 211
cart-prod-tables.......................... 136

catalog->html 67

224
Cgil:serve-query...............ouiiiiiniao.. 70
chap:next-string.......................... 191
chap:string>=7........... 191
chap:string>?............... 191
chap:string<=7............................ 191
chap:string<?.......... 190
check-parameters........................... 56
chromaticity->CIEXYZ...................... 109
CIE:DE*..... ..., 110
CIE:DE*O94 110
Cciexyz->colort 103
CIEXYZ->e-sRGB............ 112
CIEXYZ->Lxaxb* 111
CIEXYZ->LAwkv*, 111
CIEXYZ->RGB709 111
CIEXYZ->SRGB 111
circular-1list, 210
circular-1ist?............. 210
clear-sky—color=xyy...............ooun... 116
close-basel 126
close-database........................ 133, 135
close—port ... 9
close-table L. 139
CMC-DE. 112
CMC:DE*. ...\ttt 111
Lo Y=Y o o= 197
collection? 166
COLOT=>CieXYZ .o vvoeiei et 103
color->e-srgb.......... ... 107
color=>L*akb*iiiiii. 104
color—>lx*c*h 105
COLOT=DLKWKVH, ..ottt 105
color—>rgb709 103
color=>srgb 106
color->string 102
color=>xrgb i 106
color-dictionaries—->lookup............... 113
color-dictionary.......................... 113
color-name->color.................oun.... 113
color-name:canonicalize 113
color-precision................ 101
color-spaceiiiiiiiii 101
color-white-point......................... 101
color:ciexyzo.oiiiiiiiii.. 103
color:e-srgb............. 107

Procedure and Macro Index

color:lkaxbk 104
color:l*ckh 105
color:Lkwkvk 104
color:rgb709 103
color:srgbl 106
COLOT? . 100
combined-rulesets......................... 120
command=—>P=SPECSttt 65
command:make-editable-table............... 68
command:modify-table....................... 67
concatenate L. 211
concatenate! 211
cond-expandiiiiiiii 209
COMSH . oottt et 210
continueiiiiii 214
convert—coloriiiaa.. 101
copy-bit......... il 82
copy-bit-field........... 83
copy-list ... 180
copy-random-state.......................... 88
COPY—tree .. .ot 190
count............ 211
create=arraycuiiiiiiiiiaa.. 157
create-database 132, 134
create-report.............. 147, 148
create-table............... 136
create-view............... il 136
cring:define-rule.................... 120, 121
ctime...... ... i 78
current-directory......................... 217
CUrrent—error-port.......................... 9
current-input-port 35, 164
current-output-port....................... 164
current-time 75

D

db->html-directory......................... 68
db->html-files...........coviniinennnen .. 68
db->netscapeiiiiiii 68
decode-universal-time T8
define-access-operation 30
define-operation........................... 29
define-predicate............. 29

define-syntax 15

225
define-tables............ 133
defmacro.vi 13
defmacro:eval 13
defmacro:expand*............. 13
defmacro:load 13
defmacro? 13
delete i 128, 188
delete*. 128
delete-domainuvuminunenennnn. 142
delete-filecoiuiiiniiiinn. 8
delete-if 188
delete-if-not, 188
delete-table 136
dequeue! ... 178
determinantiiii... 124
diff:edit-length............. 196
diff:edits 196
diff:longest-common-subsequence.......... 196
difftime........ ... 75
display-file.............................. 199
do=€ltS. .ot 166
AO-KeYS . .ot 167
domain-checkeroiinini... 142
dotted-1ist? L. 210
AXOP .+ e v et 211
dynamic-ref 169
dynamic-set! 169
dynamic-wind L. 207
dynamic? 169
E
e-sRGB->CIEXYZ 112
e-Srgb->Cc0lor 107
e-sRGB->e-sRGB 112
e-SRGB->SRGBt 112
eighth............ 211
MLy T . e 167
encode-universal-time 79
enquque! ... 178
equal?. 164
eval ..o 207
BVELY oottt 182
OVELY T it 167
extended-euclid.............. 85

Procedure and Macro Index

F

factor.o 87
i 89
i v 89
fifth. ... 211
file->color-dictionary 113
file-exists? ... 8
filename:match-ci??........ 58
filename:match??........ 58
filename:substitute-ci??.................. 58
filename:substitute?? 58
fill-empty-parameters 56
find. ... 212
find-if 183
find-ratio 206
find-ratio-between........................ 206
find-string-from-port? 195
find-tail 212
first.. ... 211
fluid-let ... 28
for-each-elt 167
for-each-key.............. 128, 167
for-each-row.......... 138
force-output L. 9
form:delimited, 65
form:element 65
form:image L 65
form:reset 65
form:submit 65
format...... ... 40
fprintf 46
fscanf 49

G

generic-write 72
gentemp. 13
get . 137
getk. ... 137
get-decoded-time........................... 78
get-method 174
get-universal-time......................... 78
BeLEeNV. .. .t 217
BetOPL . oot 52

226
getopt—->arglist 57
getopt->parameter-list 56
glob-pattern?............................. 218
gmktime....... 78
gmtime......... 7
golden-section-search 118
gray-code->integer......................... 84
gray-code>=T 85
gray-code>? 85
gray-code<=T 85
gray-code<? 85
BLOY ettt 112
gtime...... 78
H
has-duplicates?.............. 184
hash......... 171
hash-associator........................... 170
hash-for-each............................. 170
hash-inquirer 170
hash-map 170
hash-remover 170
hashq........... 171
hashv.......... 171
heap-extract-max!......................... 177
heap-insert! 177
heap-length 177
histograph 93
hollasch, 114
home-vicinity 6
html:anchor 71
html:atval 63
html:base 71
html:body 64
html:buttons 65
html:caption............................... 66
html:checkbox 64
html:comment 64
html:editable-row-converter............... 68
html:form 64
html:head 64
html:heading 66
html:hidden 64
html:href-heading.......................... 66

Procedure and Macro Index

html:http-equiv............................ 63
html:isindex 71
html:link 71
html:linked-row-converter 66
htmlimeta 63
html:meta-refresh 63, 64
html:plain......... 63
html:ipre...... ..ot 64
html:select 64
html:table 66
html:text 64
html:text-area............................. 64
http:content 69
http:error-page............................ 69
http:forwarding-page....................... 69
httptheader 69
http:serve-query.................c.oovun.... 69
|

identifier? 24
identifier=7......... L. 25
identity........... . 11
implementation-vicinity 6
in-vicinity 6
init-debug i 214
integer->gray-code......................... 84
integer->list 84
integer-expt 83
integer-length............................. 83
integer-sqrt 117
interaction-environment 208
intersection............. 181
3 - 210
J

jacobi-symbol 87
K

kill-process! i 199
kill-table ...t 127

227
L
L*xaxb*->CIEXYZ 111
1#a*b*=>C010Trottt 104
Lkaxb*=>L*kCxh 111
Lkaxb*:DE 112
Ikckh->color ... 105
LkCxh->Lka*b* 111
LkCxh:DE*94, 112
Lxuxv*=>CIEXYZ 111
1HkUkVR=>COLOT . ..ottt 104
laguerre:find-polynomial-root............ 117
laguerre:find-root........................ 117
1ast oo 186, 211
last-pair 12
length+. 211
library-vicinity............... 6
light:ambient 96
light:beam.............. 96, 97
light:directional.......................... 96
light:point 97
light:spot ... 97
Tisth. 180
list->bytes 164
list->integer 84
list->string, 205
list->vector ..., 205
list-of?7 182
list-table-definition 134
list-tabulate 210
list-tail i 205
list=. .. 210
load-color-dictionary 113
load-optionciiiniiii. 150
localtime 7
1ogandovi e 81
logbit?. 82
logcount.ooviiiiiiniii i 82
1OGIOT . ottt 81
1ognot . .o 81
logtest... ..o 82

Procedure and Macro Index

M

macro:eval 14, 15, 19, 26
macro:expand 14, 15, 19, 26
macro:load 14, 16, 19, 26
MACTOXPANA . . o v vv ettt e e 13
macroexpand-1............ 13
macwork:eval 16
macwork:expanda..., 15
macwork:load 16
MAKE=ATTAY . . oo eeeee et 159
make-basel 126
make-bytes 164
make-color 101
make-command-server....................... 144
make-directory................ 217
make-dynamic 169
make-exchanger 11
make-generic-method....................... 173
make-generic-predicate 173
make-getterl 128
make-hash-table........................... 170
make-heap i 177
make-key->list............ 127
make-key-extractor........................ 127
make-keyifier-1.......... 127
make-list 179
make-list-keyifier........................ 127
make-method! L 173
make-object 173
make-parameter-list........................ 55
Make-port—=Crcc.ovuiiriinnennenn .. 90
make-predicate! Ll 173
make-promise, 207
make-putterl 129
make-query-alist-command-server........... 70
MAKe—qUEUE o ttiiti et 177
make-random-state.......................... 88
make-record-type.......................... 178
make-relational-system 134
make-ruleset 120
make-shared-array......................... 159
make-sierpinski-indexer 171
make-slib-color-name-db.................. 114
make-syntactic-closure 22

make-tableotiiit 126

228
make-uri............., 70, 71
make-vicinity L. 6
make-wt-tree 151
make-wt-tree-type............. 150
map-elts 166
map—Key.......ooiiii 128
map-Keys i 167
matfile:loadiiiiii 165
matfile:read 165
matrix—>arrayooeuuiinainain.. 124
matrix->lists 124
matrix:inverse, 124
matrix:product 124
mdbm:report 133
member. 212
member-if 181
1T o< 192
merge! 193
mRtime.o 78
MO . ottt 85
modular:* ... 86
modular:— 86
modular:+ 86
modular:expt L.l 86
modular:invert, 86
modular:invertable?.......... 86
modular:negate 86
modular:normalize.......................... 86
modulus->integer.............. 85
must-be-first L. 61
must-be-last 61
N
TICOTIC - v et et et et e e e e et e e 187
newton:find-root............. 117
newtown:find-integer-root................ 116
ninth...... 211
not-pair? ...t 210
NOTANY . o oottt et e e 182
NOLEVETY ..ottt 182
NEEVETSE .o veeteee e e et 188
nthedr. 187
null-directory?........... 217
null-environmenton.... 208

Procedure and Macro Index

null-1ist? 210

object. 29
object->limited-string 73
object->string 73
object-with-ancestors 29
object?. 173
offset-time 75
open-basel 126
open-command-database 141
open-command-database! 141
open-database......................... 132, 135
open-database! 132
open-file........... 8
open-table..............., 127, 135
operate=as i 29
L e 189
ordered-for-each-key...................... 128
os—>batch-dialect.......................... 62
output-port-height.......................... 9
output-port-width........................... 9
overcast—-sky—-color—-xyy 116

P

parameter-list->arglist 56
parameter-list-expand 56
parameter-list-ref......................... 55
parse-ftp-address......................... 218
path->uri 218
Plot ..o 91, 92
pom:array-write........................... 166
pnm:image-file->array 165
pom:type-dimensions....................... 165
POTE T 9
position Ll 184
pprint-file L. 74
pprint-filter-file......................... 74
prec:commentfix............................ 39
prec:define-grammar........................ 35
prec:delim, 37
prec:infix L il 38

prec:immatchfix............................ 39

229
prec:make-led, 37
prec:make-nud 37
prec:matchfix.............................. 39
PTECINATY ittt e et 38
prec:mofixl 37
PTreC:IPaArSe vviiieiieii i 3D
prec:postfix L., 38
prec:prefiX ... 38
prec:prestfix.......... L. 38
predicate->asso................., 163
predicate->hash........................... 170
predicate->hash-asso...................... 170
present? 128
pretty-print 73
pretty-print->string....................... 73
prime?. ... 87
Primes>. 87
primes<......... ... 87
print.......... . 29
print-call-stack.......................... 215
printf. ... 46
process:schedule!......................... 199
program-vicinity............ 6
project-table.................. 136
proper-1ist? 210
provide 1,5
provided?, 1,5
Q
AP et 213
o) <3+ 213
o < P 213
queue—empty? 177
queue-front 178
queue-pop! ... 178
queue-push! i 177
QUEUE=T@AT . .ot veette et 178
QUEUET . ot 177

Procedure and Macro Index

TANAOM .« oottt e et e e e e e 88
TaNdOmM:€XP « oo vv ettt 89
random:hollow-sphere! 89
random:normal 89
random:normal-vector! 89
random:solid-sphere!....................... 89
random:uniform.............., 89
rationalize 206
read-byte 164
read-commandeuiinininan..... D4
read-lineiiiiiii 198
read-line! 198
read-options-file.......................... 59
record-acCesSSOorottt 179
record-constructor........................ 178
record-modifier............ 179
record-predicate............ 178
redliCeot 167, 184
reduce-init 185
=Y (Pt 85
TEMOVE . o v vvet et et et e ettt 183
remove-duplicates......................... 184
remove-if 183
remove-if-not, 183
remove-parameter 59
remove-setter-for.............. 30
repl:quit 213
repl:top-level 212
replace-suffix............ 59
require 1,3,5
require:feature->path 2,5
B T=1=Y o L= 114
restrict-table............, 136
reverse! ... 211
RGB709->CIEXYZ 111
rgb709->C0l0rttt 103
row:delete 138
row:deletex 138
row:insert 138
row:insert* 138
TOWITEMOVE .. vvoeee e ete et e e e 137
TOWITEMOVER . oottt e et eeee e e 138
row:retrieve 137
row:retrieve* 137

230
row:update, 138
row:update* i 138
S
scanf 49
scanf-read-list, 49
scene:overcast ... 95
SCENE IPANOTAMA . . . e vveveveeeeeeeenenn. 95
scene:sky-and-dirt......................... 95
scene:sky-and-grass........................ 95
scene:sphere, 95
SCENEISUIL .ottt ettt et et 95
scene:viewpoint............................ 95
scene:viewpoints................. 96
scheme-report-environment 208
SChmooZ. 79
secant:find-bracketed-root 117
secant:find-root............ 117
seed->random-state......................... 88
SEE L 30
set-difference........... 181
setter.... ... 30
Setter...... .. . 168
seventh......... 211
si:conversion-factor...................... 202
singleton-wt-tree......................... 151
sixth. ... 211
SIZE ... 29, 167
SKY=COLOT=XYY « oo voevee e 116
slibierror 10
slib:evalt 10
slib:eval-loadciiiienn .. 10
slib:exit ...t 10
slib:load ...t 10
slib:load-compiled......................... 10
slib:load-source...........c...vvuiinnninn.. 10
slib:report 7
slib:report-version......................... 7
slib:warn ...t 10
software-type 7
solar-declination......................... 115
solar-houriiiiiii... 114
solar-polariiiiiiiiii. 115
S011d:arTowW . ..o vv e 100

Procedure and Macro Index

solid:boxl 98
solid:center-array-of 99
solid:center-pile-of....................... 99
solid:center-row-of........................ 99
solid:color 99
solid:cone 98
solid:cylinder 98
solid:disk il 98
solid:ellipsoid............ ..., 98
solid:pyramid................ ..., 98
solid:rotation............................ 100
solid:scale 100
solid:sphere 98
solid:texture.............................. 99
solid:translation......................... 100
solidify-database 133, 135
SOME . o vttt et e e e e 181
SOTE .ot 193
sort! 193
sorted?....... ... 192
SOUNAEX . .. vt ittt et et 172
spectrum->CIEXYZ.......................... 108
spectrum->XYZ 108
split-at ... 211
sprintf... 46
sRGB->CIEXYZ 111
srgb->color 106
SRGB->e-sRGB 112
sscanf....... ... 49
Stack. ... 216
stack-alll 214
string->color 102
string->list 205
string-capitalize......................... 197
string-captialize!........... 197
string-ci->symbol......................... 197
String—copyot 205
string-downcase........................... 197
string-downcase!, 197
string-fill!l 205
string-index 194
string-index-ci.............., 194
string-join o 61
string-null?......... 204

string-reverse-index...................... 194

231
string-reverse-index-ci 194
string-subst L. 195
string-upcase................ 197
string-upcase! 197
StudlyCapsExpand.......................... 197
sub-vicinity 7
subarray i 160
subarrayliiii 161
subst........ 190
SUbSEQ. ..o 190
substring-ci?............. 195
substring-fill! 204
substring-move-left!...................... 204
substring-move-right! 204
substring?l 195
SUDSEV. ..ot 190
sunlight-ciexyz........................... 116
sunlight-spectrum......................... 115
sunlight-xyz 115
supported-key-type?....................... 129
supported-type? 129
symbol-append 197
symmetric:modulus............... 85
sync-basel 126
sync-database......................... 133, 135
syncase:eval, 26
syncase:expandoiiiiiiii.. 26
syncase:loadl 26
syncloteval ...t 19
synclo:expandoiiiii.... 19
synclo:loadoouiiiiiiiii., 19
syntax-rules, 15
SYSTeM. ... 217
T
table->linked-html......................... 67
table->linked-page............c..ciiiii... 67
table-exists?........... 135
table-name->filename....................... 67
take 211
take-right 211
temperature->CIEXYZ....................... 109
temperature->XYZ......... 109
tenth........... i 211

Procedure and Macro Index

time-zone 76
tmpnam. ...t 9
tok:char—group...........covvuiinnnnonn... 35
topological-sort.......................... 194
Trace. ... 216
trace-all i 214
tracef 216
Brack. ..o 216
track-all 214
transcript-off 203
transcript-on...............l 203
transformer, 20
transposei i 124
truncate-up-to.............. 61
TSOTt ..o 193
tWo—arg:— ... 205
two-arg:/ ... 200
tWo—arg:apply 206
type-of ... 197
tziparams ... 76
tzset 76
U

unbreak........... 215
unbreakf 215
union. ... 181
unmake-method! L. 174
unstack........... ... 216
UNETACE. . ottt ettt 216
untracef L il 217
untrack........... ... i 216
unzipl........... 211
UNZIP2. ottt e 211
UNZIip3. .. 211
UNZIP4. ..o 211
unzipS........ .. 211
uri->tree 71
uric:decode i 72
uric:encode i 71
url->color-dictionary 113
user-email-address........................ 217
user-vicinity L 6

232
\Va
ValuesS . . oot 209
vector->1ist 205
vector-fill! 205
VEML .o 94
vrml-appendiiiiii 94
vrml-to-file 94
W
wavelength->XYZ 108
with-input-from-file...................... 203
with-output-to-file....................... 203
world:info 94
wrap-command-interface 141
write-base 126
write-byte i, 164
write-database........................ 133, 135
write-line........... 198, 199
wt-tree/add 152
wt-tree/add! 152
wt-tree/delete.................. 152
wt-tree/delete! 153
wt-tree/delete-min........................ 156
wt-tree/delete-min!....................... 156
wt-tree/difference........................ 153
wt-tree/empty? 152
wt-tree/fold 154
wt-tree/for-each.......................... 155
wt-tree/index 155
wt-tree/index-datum....................... 155
wt-tree/index-pair........................ 155
wt-tree/intersection...................... 153
WE=tree/L1O0KUP . . oo vvieee e 152
wt-tree/member?..........., 152
wt-tree/min 155
wt-tree/min-datum......................... 156
wt-tree/min-pair.......................... 156
wt-tree/rankiiiiiii 155
wt-tree/set-equal?........................ 154
wt-tree/size 152
wt-tree/split>...... 153
wt-tree/split<.......... 153
wt-tree/subset?.............., 154
wt-tree/union.............., 153

Procedure and Macro Index

WE—tree? 152

KCOMS .« vt et ettt e e 210
Xrgb->color 106
XyY->XYZ ... 109
xyY:normalize-colors...................... 110

XYZ->chromaticity.............. 109

233
XYZ->xyY oo 109
XYZ:normalizeouvriiunnnnnnnnn.. 109
XYZ:normalize-colors..........couvuuunnnn. 109
Zenith-xXyy ... 116
ZAD et 211

Variable Index

Variable Index

This is an alphabetical list of all the global variables in SLIB.

*

base-table-implementations............. 125
*catalog®. b)
features il 4
http:byline 69
kmodules*........... ...)
KOPLATEH . . oottt 52
koptind*........ 52
xqp-width* L L 213
random-state 88
¥ruleset* i 120
xsyn-defs* 34
syn-ignore-whitespace 34
timezone 7
B

batch:platform............................. 60
C

catalog-id 127
char-code-limit............................. 7
charplot:dimensions........................ 91
CIEXYZ:DBO 111
CIEXYZ:D65 111
column-domains............................ 139
column-foreigns........................... 139
COLUMN-NAMESo vvvee e e e e 139
column-typesouiiiiiiii... 139
D

DBO .. 102
DB5 .. 102

daylight? 7T

234
debug:max-count 215
distribute* 120
distribute/ L. 120
most-positive-fixnum........................ 7
nil. ... 12
number-wt-type................, 151
primary-limit........... 139
o2 B ST o5 o oY== 87
prime:trials............ 87
slib:form-feed 7
slibitab. ... 7
stderr........ 46
stdin........... i 46
stdout........... . 46
string-wt-type, 151
T 12
tok:decimal-digits......................... 36
tok:lower-caseiiiiiia.. 36
tok:upper-case.................. i 36
tok:whitespaces............................ 36
TZNAMEot T

Concept and Feature Index

Concept and Feature Index

Alist.. ..ot 162
alist-table 125, 126, 134
ange-ftp. ... 218
APPEATANCE . . o vt et et e e 99
ATTAY o veeve e e 157
array-for-each............................ 161
attribute-value o o L 63
Auto-sharing 132

B

balanced binary trees 149
base 71
base-table......... 125
batch 59 62
binaryoooo i 164
binary trees 149
binary trees, as discrete maps................ 150
binary trees, as sets..................... ..., 150
break....... ... 214
byte ..o 163

calendar time 75, 77
Calendar-Timet . 7
caltime 77
canonical............. 112
careful 119
catalog. ... 1
Catalog File......... 2
o= e P 69
chapter-order 190
charplot..........., 91
Chromaovvueii i 105
ciel931. .. 108
ciel964. 108
CleXYZ. ..ot 108
CIEXYZ . ..o 103
COBTCR . . ettt et et e e e e e 197
ColleCt ..o 166, 167
command line 54
commentfix L il 34
common-list-functions................ 167, 179
commutative-ring............... 119

Coordinated Universal Time................. 7

235
copyright 223
D
databases 62, 132, 142, 145
daylight i 114
debug 213, 214
defmacroexpand.......................... 13, 74
delim. . ..ot 34
diff ... 195
discrete maps, using binary trees............. 150
DrScheme 222
dynamic............ .. i 169
dynamic-wind 207
E
e-sRGB........ 107
escaped ... 72
Euclidean Domain 120
eval 207
exchangero i 11
F
factor..... 87
feature 1, 12
i v 89
filename........... il 58
fluid-let ... 28, 145
form..... ... 64
format.......... 10
G
gamub 103
generic-write............ 72
getit ..o 218
getopt ... 51, 53, 145
getopt-parameters.......................... 56
glob ..o 58, 62
Gray code. ... 84
Guile. ..o 222

Concept and Feature Index

hash. 170
hash-table, 169
hollaschoiiin i 114
HOME 2,6
homecat |
html-form 63
http. .o 69
Hue 105

ICCProfile...... ..., 106
impleat ... 4
infix. ... 33
inmatchfix 34

L

LHakDk . oot 104
LkCkh. ..o 105
LoKWRVR . ottt et e e e 104
Left Denotation, led 36
Lightness 104, 105
line-i..... . 198
list-processing library 210
logical......oovniii i 81

11 E Vel o o T 14, 213
macro-by-example 14
macros-that-work.......... 15
MAKE=CTC. ittt et e e 90
match 128
match-keyso oL 128, 138
matchfix. 34
matfile. 164
metric-units 199
minimize 118
minimum field width (printf)................ 47
MIT Scheme.oouiimiiiieiaeaann.. 222
mkimpcat.scm....... ... oo 4
mklibcat.sem 4
modular. i 85
multiarg 205

multiarg-applycoiiiiiia.. 206

236
MzScheme, 222
N
DALY oottt e e e 34
net-clients 217
new-catalog 3
nofix.......... i 33
null.. ... 67
Null Denotation, nud 36
@)
object.......l 172, 174, 175
object=>string 73
Lo < X 28
option, run-time-loadable.................... 150
options file 55
P
parameters.......................... 55, 62, 145
PATSE ..ottt 33
plain-text 63
PLT SChemec.oteti e 222
posix—timel 7
Postfix. ... 34
pprint-file 74
PRE. ... 64
precedence i, 33
precision (printf)l 47
prefix....l 33
prestfix.... 34
pretty-print 73
Primes.ttt 87
printf 46
priority-queue............., 177
PRNG ... 87
PLOCESS . ittt ittt e 199
promise................ . 207
Q
o] o A 53, 213
query-string............. ... 69, 70
QUEUE . o vttt e et 177

Concept and Feature Index

a2 o= 203
S =P 203
TAYS oot 203
25 =P 203
TANAOM .« o\ttt et e e 87
rationalizeoiiiiii 206
read-command 54
TECOTA . ottt e 178
relational-database....................... 129
repl ... 27, 212, 213
TESEIE . o . vt ettt et et et e 114
TESEl . oo 65
rev2-proceduresiiiiiiia.. 204
Tev3-Teport ... 222
rev4-optional-procedures 205
RGB709. .. . 103
ring, commutative L. 119
RNG .. 87
TOOT o ettt e 116
run-time-loadable option 150

scanf 49
Scheme Request For Implementation......... 209
Schemed8 221
SChMOOZ . . .ottt 79
SCM e 221
self-set i 119
Sequence Comparison 195
Server-based Naming Authority............... 71
SESSIONL .« . v vttt 1
sets, using binary trees...................... 150
sierpinski L 171
sitecat 4
SRy o et 114
slibcat ... 4
SOLAd. .o 94
solid-modeling 94
SOLIdS ..o v it 94
SOTE vttt 191
SOUNAEX .« o\ et et ettt e 172
SPATSE « vttt e 165
Spectral Tristimulus Values.................. 107
spiff ..o 195
STEi. .. 209

237
srfi-1.. . .. 210
SRFI-1 ... 210
SRGB . ..ot 106
stdio. ... 16
string-casel 197
string-port 198
string-search............................. 194
sSubarray 160
SUIL . ettt et et e e e e e 114
sunlight i 114
syntactic-closures.................c........ 19
SYyNtax—Case.................iiiiaiiia... 26, 27
T
time 75
time-zone 76
topological-sort.......................... 193
trace....... 215
transcript 203
tree..... 189
trees, balanced binary....................... 149
tristimulus oL 103
TSOTE oo i v 193, 194
turbidity 115
TZ-Stringcooiiiiii 75
U
Uniform Resource Identifiers.................. 70
Uniform Resource Locator................... 218
Unique Factorization........................ 120
unsafe 72
UTd oo 70
URIL....oo 69, 70
USETCAb . .ot 1
UTC. . 7
\Va
ValuesS. ..ot 209
VOCM . oo 221

Concept and Feature Index

W

WB 125
wb—table i 125
weight-balanced binary trees................. 149
wgeb. ..o 114
white point........... 102
wild-card.......... ... 128
with-file 203
Wwt=tree. 149

238
X
XRGB . .. 106
XYY e 109
Y

Table of Contents

1 The Library System........................ 1
1.1 Feature...... ..o 1
1.2 Requesting Features.......... 1
1.3 Library Catalogs 2
1.4 Catalog Compilation 3
1.5 Built-in Support ... 4

1.5.1 Require........ ..o 4

1.5.2 Vicinity . ..o 6

1.5.3 Configuration 7

1.5.4 Input/Outputccoviiiiiiiaiiean... 8

1.5.5 System ... 10

1.5.6 Miscellany 11

1.5.6.1 Mutual Exclusion..................... 11

1.5.6.2 Legacyooviiiniiini. 12

1.6 About thismanual 12

2 Scheme Syntax Extension Packages........ 13

2.1 Defmacro..... ... 13
2.1.1 Defmacroexpand............................... 13

2.2 RARS MacCroSoouui e 14
2.3 Macroby Example......... 14
231 Caveab........ooiii 14

2.4 Macros That Work 15
2.4.1 Definitions 17

2.4.2 Restrictions i 17

2.5 Syntactic Closures. ...t .. 19
2.5.1 Syntactic Closure Macro Facility 19

2.5.1.1 Terminologyc.cooiiii.. 20

2.5.1.2 Transformer Definition 20

2.5.1.3 Identifiers 24

2.5.1.4 Acknowledgements 26

2.6 Syntax-Case MacroSuoueiiineeiinneianaa. 26
2.6.1 Notes. ... 27

2.6.2 Note from maintainer.......................... 27

2.7 Fluid-Leto o 28
2.8 Y80S o 28
2.8.1 Termsooui e 28

2.82 Interface......... .. .o 29

2.83 Setters..........iiii 30

2.84 Examples............ 31

3 Textual Conversion Packages.............. 33
3.1 Precedence Parsing............. 33
3.1.1 Precedence Parsing Overview................... 33
3.1.2 Ruleset Definition and Use 34
3.1.3 Token definition 35
3.1.4 Nud and Led Definition 36
3.1.5 Grammar Rule Definition 37
3.2 Format (version 3.0)......... i 40
3.2.1 Format Interface............................... 40
3.2.2 Format Specification (Format version 3.0) 40
3.2.2.1 Implemented CL Format Control Directives
... 41

3.2.2.2 Not Implemented CL Format Control
Directives ... 44
3.2.2.3 Extended, Replaced and Additional Control
Directives 44
3.2.2.4 Configuration Variables................ 45

3.2.2.5 Compatibility With Other Format

Implementations.......................... 45
3.3 Standard Formatted I/O................. 46
3.3.1 stdio. ..o 46
3.3.2 Standard Formatted Output.................... 46
3.3.2.1 Exact Conversions 48
3.3.2.2 Inexact Conversions 48
3.3.2.3 Other Conversions 49
3.3.3 Standard Formatted Input 49
3.4 Program and Arguments., 51
3401 Getopt. ..o 51
342 Getopt—. . ot 53
3.43 Command Line................................ 54
3.4.4 Parameter lists.......... B5)
3.4.5 Getopt Parameter lists......................... 56
3.4.6 Filenames........ ... 58
3.4.7 Batch.......... 59
3.5 HTML ..o 63
3.6 HTML Forms............ i, 64
3.7 HTML Tables....... .o 66
3.7.1 HTML editing tables........................... 67
3.7.2 HTML databases 68
38 HTTP and CGI.... 69
3.9 URI. ... 70
3.10 Printing Scheme 72
3.10.1 Generic-Write 72
3.10.2 Object-To-String, 73
3.10.3 Pretty-Print....... 73
3.11 Timeand Date............ ..., 75
3111 Time Zoneoooinie i 75

3.11.2 Posix Time.o 77

ii

3.11.3 Common-Lisp Time........................... 78

3.12 Schmooz 79
4 Mathematical Packages 81
4.1 Bit-Twiddling............. o 81
4.1.1 Bitwise Operationsccooveoo... 81

4.1.2 Bit Within Word 82

4.1.3 Fieldsof BitS..........ccoi . 82

4.1.4 Bit order and Lamination 84

415 Graycode...... ..o 84

4.2 Modular Arithmetic............ 85
4.3 Prime Numbers........... 87
4.4 Random Numbers........... 87
4.5 Fast Fourier Transform 89
4.6 Cyclic Checksum i, 90
4.7 Plotting 91
4.8 Solid Modelingo 94
4.9 COlOr. . ..o 100
4.9.1 Color Data-Type ... 100

4.9.1.1 External Representation.............. 101

4.9.1.2 White................ ... 102

4.9.2 Color SpPaces ..ot 102

4.9.3 Spectra........coiii 107

4.9.4 Color Difference Metrics 110

4.9.5 Color Conversionsoouueuuuuenn... 111

496 Color Names............oouiiiieninanna.. 112

4.9.7 Daylight 114

410 Root Finding i 116
411 Minimizingoooo i 118
4.12 Commutative Rings 118
4.13 Rulesand Rulesets............... 120
4.14 How to Create a Commutative Ring 121
4.15 Matrix Algebra 124
5 Database Packages....................... 125
5.1 Base Table 125
5.2 Relational Database 129
5.2.1 Using Databases.............................. 129

5.2.2 Relational Database Objects................... 131

5.2.3 Database Operations.......................... 132

5.2.4 Table Operations 134

5.2.5 Catalog Representation 137

5.2.6 Embedded Commands 138

5.2.6.1 Database Extension.................. 139

5.2.6.2 Command Intrinsics.................. 139

5.2.6.3 Define-tables Example................ 140

5.2.6.4 The *commands* Table 141

5.2.6.5 Command Service.................... 142

iii

5.2.7
5.2.8

5.3 Weight-

5.3.1
5.3.2

5.2.6.6 Command Example 143
Database Reports 145
Database Browser 146
Balanced Treeso ... 147
Construction of Weight-Balanced Trees......... 148

Basic Operations on Weight-Balanced Trees 149

5.3.3 Advanced Operations on Weight-Balanced Trees
... 150
5.3.4 Indexing Operations on Weight-Balanced Trees.. 153
6 Other Packages.......................... 155
6.1 Data Structures............. i 155
6.1.1 Arrays. 155
6.1.2 Subarrays...........oeiiiii 158
6.1.3 Array Mapping............ooiiiiii 159
6.1.4 Association Lists 160
6.1.5 Byte. ..o 161
6.1.6 MAT-File Format............................. 162
6.1.7 Portable Image Files.......................... 163
6.1.8 Collections..............oooiiiiiin ... 164
6.1.9 Dynamic Data Type 167
6.1.10 Hash Tables........... 167
6.1.11 Hashing 168
6.1.12 Macroless Object System..................... 170
6.1.13 Conceptsovvei 170
6.1.14 Procedures.................oiiiiiiiiii.. 171
6.1.15 Examples............ ..., 172
6.1.15.1 Inverter Documentation............. 173
6.1.15.2 Number Documention............... 173
6.1.15.3 Invertercode 173
6.1.16 Priority Queues 175
6.1.17 QUEUES .. oottt 175
6.1.18 Records...........coiiiiinii.. 176
6.2 Sorting and Searching 177
6.2.1 Common List Functions....................... 177
6.2.1.1 List construction..................... 177
6.2.1.2 Listsassets......................... 178
6.2.1.3 Lists assequences.................... 182
6.2.1.4 Destructive list operations............ 185
6.2.1.5 Non-List functions 187
6.2.2 Tree operations.coviiinineen.... 187
6.2.3 Chapter Ordering. 188
6.2.4 Sorting i 189
6.2.5 Topological Sort............... 191
6.2.6 String Search..............., 192
6.2.7 Sequence CompariSonooueo... 193
6.3 Procedures 194
6.3.1 Type Coercionoovviiiiiiii... 195

iv

6.3.2 String-Caseoiiii 195

6.3.3 String Ports.......... 196
6.34 LineI/O. 196
6.3.5 Multi-Processing, 197
6.3.6 Metric Unitso 197
6.3.6.1 SI Prefixes........................... 198
6.3.6.2 Binary Prefixes 199
6.3.6.3 Unit Symbols........................ 199
6.4 Standards Support ... 200
6.41 RnRS..... 201
6.42 With-File....... 201
6.4.3 Transcripts........ ... 201
6.4.4 Rev2 Procedures 202
6.4.5 Rev4 Optional Procedures..................... 203
6.4.6 Multi-argument /and - 203
6.4.7 Multi-argument Apply 204
6.4.8 Rationalize............ 204
6.4.9 Promises........... 205
6.4.10 Dynamic-Wind 205
6.4.11 Eval..... .. 205
6.4.12 Values.......... ... 207
6.4.13 SRFIL...... ... 207
6.4.13.1 SRFL-1....... 208
6.5 Session SUPPOTtt 210
6.5.1 Repl..... ... 210
6.5.2 Quick Print 211
6.5.3 Debug......... . 211
6.5.4 Breakpoints......... 212
6.5.0 Tracing......... ..o 213
6.5.6 System Interface.............................. 215
6.6 Extra-SLIB Packages.............. 216
7 About SLIB................, 218
7.1 Imstallation....... 218
7.1.1 Unpacking the SLIB Distribution 218
7.1.2 Configure Scheme Implementation to Locate SLIB
... 218
7.1.3 Loading SLIB Initialization File 218
7.1.4 Build New SLIB Catalog for Implementation ... 219
7.1.5 Implementation-specific Instructions 219
T2 Porting.........oooo i 220
7.3 Coding Guidelines., 220
7.3.1 Modifications............. ... 221
7.4 Copyrights.o 221
7.4.1 Putting code into the Public Domain........... 221
7.4.2 FExplicit copying terms 222

7.4.3 Example: Company Copyright Disclaimer 222

Procedure and

Variable Index

MacroIndex

Concept and Feature Index..................

vi

	The Library System
	Feature
	Requesting Features
	Library Catalogs
	Catalog Compilation
	Built-in Support
	Require
	Vicinity
	Configuration
	Input/Output
	System
	Miscellany
	Mutual Exclusion
	Legacy

	About this manual

	Scheme Syntax Extension Packages
	Defmacro
	Defmacroexpand

	R4RS Macros
	Macro by Example
	Caveat

	Macros That Work
	Definitions
	Restrictions

	Syntactic Closures
	Syntactic Closure Macro Facility
	Terminology
	Transformer Definition
	Identifiers
	Acknowledgements

	Syntax-Case Macros
	Notes
	Note from maintainer

	Fluid-Let
	Yasos
	Terms
	Interface
	Setters
	Examples

	Textual Conversion Packages
	Precedence Parsing
	Precedence Parsing Overview
	Ruleset Definition and Use
	Token definition
	Nud and Led Definition
	Grammar Rule Definition

	Format (version 3.0)
	Format Interface
	Format Specification (Format version 3.0)
	Implemented CL Format Control Directives
	Not Implemented CL Format Control Directives
	Extended, Replaced and Additional Control Directives
	Configuration Variables
	Compatibility With Other Format Implementations

	Standard Formatted I/O
	stdio
	Standard Formatted Output
	Exact Conversions
	Inexact Conversions
	Other Conversions

	Standard Formatted Input

	Program and Arguments
	Getopt
	Getopt--
	Command Line
	Parameter lists
	Getopt Parameter lists
	Filenames
	Batch

	HTML
	HTML Forms
	HTML Tables
	HTML editing tables
	HTML databases

	HTTP and CGI
	URI
	Printing Scheme
	Generic-Write
	Object-To-String
	Pretty-Print

	Time and Date
	Time Zone
	Posix Time
	Common-Lisp Time

	Schmooz

	Mathematical Packages
	Bit-Twiddling
	Bitwise Operations
	Bit Within Word
	Fields of Bits
	Bit order and Lamination
	Gray code

	Modular Arithmetic
	Prime Numbers
	Random Numbers
	Fast Fourier Transform
	Cyclic Checksum
	Plotting
	Solid Modeling
	Color
	Color Data-Type
	External Representation
	White

	Color Spaces
	Spectra
	Color Difference Metrics
	Color Conversions
	Color Names
	Daylight

	Root Finding
	Minimizing
	Commutative Rings
	Rules and Rulesets
	How to Create a Commutative Ring
	Matrix Algebra

	Database Packages
	Base Table
	Relational Database
	Motivations
	Unresolved Issues

	Using Databases
	Relational Database Objects
	Database Operations
	Table Operations
	Catalog Representation
	Embedded Commands
	Database Extension
	Command Intrinsics
	Define-tables Example
	The *commands* Table
	Command Service
	Command Example

	Database Reports
	Database Browser

	Weight-Balanced Trees
	Construction of Weight-Balanced Trees
	Basic Operations on Weight-Balanced Trees
	Advanced Operations on Weight-Balanced Trees
	Indexing Operations on Weight-Balanced Trees

	Other Packages
	Data Structures
	Arrays
	Subarrays
	Array Mapping
	Association Lists
	Byte
	MAT-File Format
	Portable Image Files
	Collections
	Dynamic Data Type
	Hash Tables
	Hashing
	Macroless Object System
	Concepts
	Procedures
	Examples
	Inverter Documentation
	Number Documention
	Inverter code

	Priority Queues
	Queues
	Records

	Sorting and Searching
	Common List Functions
	List construction
	Lists as sets
	Lists as sequences
	Destructive list operations
	Non-List functions

	Tree operations
	Chapter Ordering
	Sorting
	Topological Sort
	String Search
	Sequence Comparison

	Procedures
	Type Coercion
	String-Case
	String Ports
	Line I/O
	Multi-Processing
	Metric Units
	SI Prefixes
	Binary Prefixes
	Unit Symbols

	Standards Support
	RnRS
	With-File
	Transcripts
	Rev2 Procedures
	Rev4 Optional Procedures
	Multi-argument / and -
	Multi-argument Apply
	Rationalize
	Promises
	Dynamic-Wind
	Eval
	Values
	SRFI
	SRFI-1

	Session Support
	Repl
	Quick Print
	Debug
	Breakpoints
	Tracing
	System Interface

	Extra-SLIB Packages

	About SLIB
	Installation
	Unpacking the SLIB Distribution
	Configure Scheme Implementation to Locate SLIB
	Loading SLIB Initialization File
	Build New SLIB Catalog for Implementation
	Implementation-specific Instructions

	Porting
	Coding Guidelines
	Modifications

	Copyrights
	Putting code into the Public Domain
	Explicit copying terms
	Example: Company Copyright Disclaimer

	Procedure and Macro Index
	Variable Index
	Concept and Feature Index

